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Abstract. A multiagent system (MAS) is a group of autonomous software entities
capable of collaboration and cooperation. It is a common practice to use simu-
lators in MAS development. However, in the case of Embedded MAS education,
integrating simulators is difficult because the agent’s reasoning is tightly cou-
pled to hardware communication interfaces. This work then presents a simula-
tor integration methodology based on serial channel emulation that fully decou-
ples the agent’s reasoning from the environment, allowing flexible integration
of simulators. We present a report on an Embedded AI undergraduate course
in two academic semesters, showing that the student’s projects completion rate
increased from 33% to 100%.

1. Introduction

An agent is an autonomous software entity capable of reasoning that, based on the sys-
tem’s perceived state, executes plans to achieve a determined goal. Agents differ from
conventional software because they show independence, cognition, and collaboration
skills, while being proactive and adaptable. Consequently, a Multi-agent system (MAS)
reunites a group of agents that could collaborate or compete for common or conflicting
goals (Michel et al. 2009). Agents can use cognitive models to guide their reasoning
process. One of the most adopted models is the Belief-Desire-Intention (BDI), which
considers the mental state based on human reasoning composed of beliefs, desires, inten-
tions, plans, and actions (Bratman et al. 1988). Furthermore, nowadays, the use of BDI
agents embedded in hardware platforms has become a reality (Onyedinma et al. 2020;
Gavigan and Esfandiari 2021a; Karaduman et al. 2023; Pantoja et al. 2023; Lazarin et al.
2024).

From an educational point of view, the BDI agent approach allows the use of
abstractions closer to the human mind to construct computational entities, leading to a
natural learning process of building intelligent applications (Lazarin et al. 2023). Addi-
tionally, adopting educational robotics and visual development environments can support
the learning process in Artificial Intelligence (AI) fields, such as embedded systems with
MAS (Yim and Su 2024).

For example, a visual IDE for Agents and the Web of Things (Burattini et al.
2022) focuses on the industrial scenario, particularly interested in enabling domain ex-
perts without programming experience to create or modify systems in Web of Things



scenarios. It has also been proposed a specific toolkit for teaching distributed and embed-
ded AI (Lazarin et al. 2023), providing a do-it-yourself kit containing methods, software,
teaching materials, hardware schematics, and codes for experiments with embedded BDI
agents. This toolkit intends to support the professor and the student in the device design
by following a methodology in which the student must focus on the reasoning layer by
abstracting low-level layers. For this, the professor previously assembles hardware plat-
forms and components, such as sensors and actuators, into a single device to speed up the
learning process.

However, although hardware such as robotics and physical artifacts are generally
effective in learning, they can be too expensive to build, which does not scale well for
larger classrooms (Yim and Su 2024). In addition, it requires specific electronic abilities
and assembly of components to prepare them to communicate with agents (Lazarin et al.
2023). The professor could then be limited by the insufficient number of devices and the
broad knowledge necessary to assemble them.

This work proposes an architecture that allows flexible exogenous environments
to support the development and learning processes of embedded MAS. In this generic
approach, the physical environment can be switched by any simulator without changing
the reasoning code or adding new layers between the agent and the environment. This
guarantees that the reasoning and architecture of the agents remain intact during deploy-
ment. Because agents use the serial port to gather sensor data and send commands to
actuators, we present a novel serial channel emulator dedicated to embedded MAS using
Jason (Bordini and Hübner 2006; Pantoja et al. 2023) or JaCaMo (Boissier et al. 2013) to
integrate the agent’s reasoning with external software.

We conducted several proof-of-concept experiments. In the first experiment, the
MAS manipulates SimulIDE (González 2023), an Arduino simulator, to interact with the
simulated hardware. Subsequently, we built an educational application to illustrate agents
exchanging perceptions and commands with the emulated ports. Finally, we created a
real robot using an embedded MAS and switched the hardware of the Webots robot sim-
ulator (Michel 1998). We also present a report on a real classroom where students had
to develop embedded MAS as part of the requirements for approval. The contributions
of our architecture are as follows: i) A novel serial channel emulator dedicated to agents
that interface hardware at the kernel level of the operating system; ii) The extension of an
existing toolkit for engineering distributed and embedded AI systems; iii) The integration
of two well-known simulators for suppressing the absence of hardware technologies.

The remainder of this paper is organized as follows. Section 2 reviews the con-
cepts necessary to understand this proposal. Section 3 presents a serial interface em-
ulation proposal for an Embedded MAS. Section 4 presents a proof of the concept of
this proposal. Section 5 shows the results when applying the methodology in classroom.
Section 6 presents and discusses related work and tools. Finally, Section 7 presents a
discussion and future work.

2. Background
The agent perception and action models are usually tied to an endogenous or exogenous
environment. When the MAS adopts an environment dimension, which is optional in
some programming languages, the agent can perceive and act upon this environment,



modifying it to fulfill its goals. When using an endogenous approach, it is necessary to
project and program the environment logical abstraction where agents will gather the fi-
nite set of possible perceptions, actions, and consequent reflections in this environment.
On the other hand, such abstraction is not necessarily mandatory when using an exoge-
nous approach since the source of perceptions and target for actions can stand external
to the agent. Besides, the exogenous environment is continuous, which means the set of
perceptions and actions tends to infinity (Ricci et al. 2012). This is the case for embedded
MAS: the environment is continuous since it is the real world, and the agents can interact
with it by gathering perceptions from the sensors, and the actions are commands sent to
actuators. Then, the available hardware limits the sets of perceptions and actions.

One can use a four-layer architecture shown in Figure 1 to build an embedded
MAS (Pantoja et al. 2016): the Reasoning layer is where the MAS is hosted; the Interfac-
ing layer is where the agents’ commands and the environments’ perception flow between
the MAS and the devices’ microcontrollers; the Firmware layer interprets the raw data
coming from sensors as useful perceptions for agents and vice-versa, and finally; the
Hardware layer defines the boundary between the device and the real-world since it is
where sensors and actuators exist.

Figure 1. The architecture of an embedded MAS.

In the Reasoning layer, the ARGO architecture (Pantoja et al. 2016) extends stan-
dard Jason agents (Bordini and Hübner 2006) to enable direct interaction in the exogenous
environment by accessing sensors and actuators. This approach is centered on serial com-
munication, where microcontrollers connected to the serial ports can send perceptions
directly to agents’ minds. In the same way, agents can send commands using these serial
ports. This is possible because a double library middleware abstracts this communication
for both layers and the device’s designers (Lazarin and Pantoja 2015).

As can be seen, serial channel communication plays an important role in this
architecture since sensors and actuators are physically connected to the MAS by using
serial ports. An ARGO agent can then use this channel to communicate with the micro-
controller, sending commands to act upon the real world using Jason’s specific internal



action. Also, the microcontrollers’ perceptions are updated on the agent’s belief based on
each reasoning cycle.

The designer could take advantage of a simulation approach based on an indistin-
guishable serial communication, which could lead to physical components or simulators.
In this case, the agent coding will not need to change since it is indifferent to the agent if
it is accessing hardware or not. The agent’s behavior manages to stay the same.

3. The Exogenous Environment Simulation Approach
This work presents an architecture to integrate an exogenous environment simulation that
supports the learning process by avoiding the need for devices’ construction during the
MAS development and teaching. The proposed approach uses pseudo serial interfaces
to replace the firmware and hardware layers with a simulation layer, where the hardware
components can be represented. The main advantage of the proposed approach is that the
agents gather perceptions and act naturally, as the MAS code does not require changes to
function properly in both situations.

In the teaching and learning process of the embedded MAS approach, the pro-
fessor can replace the devices with simulated representations. These digital twins are
useful to avoid damage to hardware components, microcontrollers, and boards during
early contact with the technologies. Besides, it reduces costs in constructing new devices
or emergency needs for new ones. For example, in a classroom where the professors do
not have enough resources, they need only one physical prototype for the whole class. At
the same time, the students can use the simulator to represent the physical prototype.

Concerning the device’s architecture of a MAS, agents at the reasoning layer can
interface hardware using a protocol to exchange serial messages in the interfacing layer
using serial interfaces. This approach extends the interfacing layer to communicate with
pseudo-serial interfaces implemented as kernel modules. ARGO agents connect to the
pseudo-serial port in the same way they connect to physical serial ports. Once connected,
agents can receive prepared percepts from the simulators or any virtualized application.
Besides, it can send action messages (commands) to be executed in simulators or other
applications. The architecture is shown in Figure 2.

Figure 2. The architecture, considering the exogenous environment simulation.



Another benefit of pseudo-serial interfaces is that they are generic for any simu-
lator or application developed in any programming language. A simulation developed in
a simulator or any programming language must provide raw data simulating sensors and
prepare them as perceptions in a belief-like style since the embedded MAS used the BDI
cognitive model. The opposite direction works the same; commands coming from agents
must be translated to low-level commands to activate simulated actuators.

3.1. Implementation
The proposed methodology is implemented using a Linux kernel module. Inside the ker-
nel of Linux operating systems, the TeleTYpewriter (TTY) layer manages all serial device
class (Linux Kernel Organization, Inc. 2023). Figure 3a shows this subordination. Be-
cause any type of serial device is also a TTY device, one can build a TTY device that does
something different, which will still be seen as a serial device for user processes.

(a) Serial devices architecture, adapted of (Linux
Kernel Organization, Inc. 2023).

(b) Emulated serial interface, adapted of (Freitas
et al. 2023).

Figure 3. Implementation of serial device emulation

The kernel module instantiates two pseudo serial devices: the ttyEmulatedPort and
ttyExogenous. The MAS is connected to the ttyEmulatedPort device, and the simulated
environment is connected to the ttyExogenous device. Whenever the agent wants to send
data, it writes it on the ttyEmulatedPort, which the simulated environment can retrieve by
reading the ttyExogenous port. The process is the same when the exogenous environment
sends data: the agent can read its content from the ttyEmulatedPort. Figure 3b shows the
main idea behind the module.

By using a serial port emulator as a kernel module, we achieve transparency be-
tween the ARGO agent and the simulator: it would still use a serial port, making the
process of migration to a physical prototype just changing from the emulated port to the
real one.

4. Proof of concept
This section will present four experiments as proof of concept using simulators as an
exogenous environment for embedded MAS. First, we used an Arduino simulator. In the
second, we build a desktop application. The third uses a robot simulator. Finally, we build
a physical prototype of the robot simulation. The first case illustrates the use of a generic
hardware simulator. The desktop application shows how one can build new scenarios for
MAS education. Finally, the last show how a robotic MAS developed in an exogenous
simulated environment can easily be deployed to real-world scenarios.



In the first experiment, as shown in Figure 4a, a project was created in SimulIDE
(version 1.0.0 R1448) where an Arduino Uno board, a 220Ω resistor, a Light Emitting
Diode (LED), and a Serial Port component were added (1). We used the default Javino’s
blink example code to deploy the firmware layer into the simulator. After that, we used
the default ChonIDE’s blink project (Souza De Jesus et al. 2023), where a BDI agent
constantly manipulates an LED. When the agent perceives the LED is on, he acts to
turn it off. When he perceives the LED is off, he acts to turn the LED on. The only
modification was to change the serial port from ttyACM0 to ttyEmulatedPort0 (2). When
running the example, the MAS log (3) shows that the agent manipulates the LED correctly.
Furthermore, the perceptions in the agent’s belief base (4) are identical to those received
if we were using a physical Arduino board. This example shows the potential of the
proposed architecture in simulating hardware devices and integrating them with a MAS.
The same code used in real Arduinos was uploaded to the simulated Arduino in SimulIDE.
So, the set of possible commands and perceptions were the same in both. As Javino works
based on a serial protocol for exchanging serial messages, it delivers the messages to the
specified port regardless of its nature. Then, it is up to the agent to decide whether or not
to connect in a physical or pseudo serial port. As a matter of fact, the agent’s reasoning
and code do not need to change, except for the target serial port.

In the second experiment, presented in Figure 4b, we developed a desktop ap-
plication in Java that simulates a physical prototype (1). We use the default chonBot’s
reasoning layer example for Jason. A BDI agent named Max displays the perceptions
received from the simulated exogenous environment based on what a real vehicle would
do: it shows the motor and buzzer status, the speed, and the LED’s status from the break
light, alert, and flashlight. Besides, it simulates the road luminosity and the distance to
an obstacle. In this desktop application, all these properties are manipulable at runtime.
The agent will reflect every change on the console. The only modification was to change
the serial port from ttyACM0 to ttyEmulatedPort0 (2). When running the example, the
desktop application’s log (3) displays the messages exchanged with the reasoning layer.
The MAS log shows that the agent interacts correctly with the application (4). Finally, the
perceptions in the agent’s belief base (5) are identical to those received if we were using
a physical prototype. This example shows that desktop applications can be used as sim-
ulators. In educational scenarios, students can produce their own simulated environment
as an exercise to represent the real world virtually, or the professor can build a scenario
for them instead.

In the last two experiments, presented in Figures 4d and 4c, we assembled a pro-
totype based on the chonBot model using one Raspberry Pi, one Arduino, two sensors
(distance), and a two-Wheel Drive (WD) robotic platform. Next, we adapted a Webot
simulation example that contains two main components: one that describes the environ-
ment (world), with objects’ position, sky, gravity, object masses, and so on, and another
that specifies the robot’s behavior (controller). Webot is a multipurpose robotic simulator
widely adopted since it is free and open-source. In this chosen example, the world is a
small square where a 4WD prototype will avoid collision with the walls, and the robot’s
controller is written in the programming language C. This experiment aims to show that
simulations can replace complex robots by just swapping the connection port.

In this case, the MAS is interfacing a C-based layer in the simulated firmware (We-



(a) Robotic agent manipulating an LED into an Ar-
duino simulator.

(b) Robotic agent and application exchanging
actions and perceptions

(c) Robotic agent acting in the Exogenous real
world.

(d) Robotic agent acting in the Exogenous sim-
ulated world.

Figure 4. Proof of concept experiments.

bots). Javino is a double-side middleware (reasoning and firmware) that offers Arduino,
Java, and Python interfacing. So, to allow the ARGO agents to interact with the simula-
tion, we first needed to implement a novel C-based middleware for Javino’s firmware side.
Hence, we add a main loop in the controller file to listen to the pseudo serial port, waiting
for agents’ acts or request perceptions. If an action is received, it must be mapped into
original robot commands. When a perception request is received, the simulator answers
with the sensor’s values. Extending Javino is interesting because it expands the possi-
bilities for firmware adoption since this Javino C-based can run in other technologies in
addition to Webots.

At last, we program the reasoning layer using JaCaMo, where an ARGO agent
should drive the vehicle, avoiding the wall by turning right when it finds something be-
tween a pre-defined range. Firstly, we connected the MAS to connect to Webots. In this
case, the agent successfully drove the robot without collision when executing the MAS.
Once the simulation validated the agent’s behavior, we assembled an arena with propor-
tional dimensions as the simulated world. Afterward, we deployed the reasoning layer to
the physical prototype. The only code change performed was changing the port, where
ttyEmulatedPort0 (emulated) was changed to ttyUSB0 (physical). The ARGO agent pre-
sented the same behavior when executing in the embedded MAS hosted by the physical



prototype.

4.1. Reproducibility

Aiming to ensure the reproducibility of this work, the source code, the scenario imple-
mentation, the source code, and a video demonstration are available in a web page1. It
also contains links to instructions on how to install and use the emulator created.

5. Results in an Embedded AI Course
This section presents a report on two academic semesters in an undergraduate electric
engineering course on working with embedded MAS. The first report will bring the results
before using the proposed methodology, while the second will report the results using it.

The course mixes theory and practice in teaching distributed and embedded AI
supported by intelligent BDI-based agents. It aims to transform theoretical concepts into
easily assimilated examples, stimulate learning and commitment, and improve classroom
interaction at various levels of education. We used a project-based learning model, where
small groups chose a problem to solve using robotic agents built with microcontrollers,
sensors, and actuators available in the laboratory.

The classroom followed a six-step methodology that goes from the basics of agent
theory to the development of distributed embedded AI systems (Lazarin et al. 2023): i)
Introductory concepts about intelligent agents; ii) BDI architecture and agent program-
ming language; iii) BDI reasoning cycle and interaction between agents; iv) Communica-
tion between different MAS; v) Mobile agents and open MAS; vi) Agents embedded in
robotic prototypes.

At the end of the course, a general presentation was organized, where all groups
described their experience, challenges encountered, and results obtained. Also, they pre-
sented a report describing their experience, considering the four different stages in the
embedded MAS development process: Reasoning (logical part of the agents), Hardware
(construction of the prototype), Firmware (logical part of the hardware), and Interfacing
(integration of the logical part with the hardware).

Table 1 describes the proposed projects the first time the course was held, in the
second semester of 2023. The table’s columns relate to the initial letters of each stage
mentioned in the last paragraph. As can be seen, only 2 out of 6 groups were able to
fully finish their projects. Other 2 groups didn’t even make it to the hardware develop-
ment phase. In this iteration, the most common challenge reported was difficulties with
building hardware with Arduino, seconded by difficulties with C programming. It is also
noteworthy to mention that, while some groups managed to complete the Reasoning layer,
they weren’t capable of testing it properly without the hardware completed.

Table 2 shows the first iteration of the class using the integrated Arduino shown
in Figure 4a, in the second semester of 2024. Here, most groups opted to use the simu-
lated environment, the main reason being the inexperience with Arduino itself. By using
the integrated simulator, all these groups managed to complete their projects within the
course’s duration, showing functional prototypes.

1https://papers.chon.group/CSBC/2025/serialChannelEmulator/

https://papers.chon.group/CSBC/2025/serialChannelEmulator/


Table 1. Description of the practical projects developed by the students on 2023/2, without
any simulator

Project Description H F I R
Fire alert A dynamic fire monitoring, when turning on, the agent communi-

cates with the firefighters’ MAS, asking for official configuration
parameters for the sensors.

√ √ √ √

Health
monitoring

A solution for monitoring cardiac arrhythmia based on agents. half X X
√

Home
security

A system to manage seasonal room rentals. Embedded agents
manage the unit, controlling access by password and rental pe-
riod.

half X X
√

Landslide
monitoring

A landslide monitoring system based on agents integrating civil
defense and smart homes.

√ √ √ √

Pet feeder An agent deposits food and water in a receptacle and monitors
consumption, notifying the human responsible whenever it is low.

half X X
√

Vegetable
garden

An irrigation system for domestic vegetable gardens. half half X
√

Table 2. Description of the practical projects developed by the students in 2024/2, with an
integrated simulator

Project Description H F I R
Parking
management

Cognitive agents are responsible for parking space reser-
vation, access control, and automated billing

√ √ √ √

Animal di-
etary control

An automated system to identify animals and setup their
diets according to their weight

Simulation
√ √

Dam level
control

An automated system to detect dam levels and warn au-
thorities in case of a dangerous level

Simulation,
then physical
prototype

√ √

Market stock
control

An automated system to detect item inventory in markets
and automatically refill them

Simulation
√ √

6. Related works

Given the plethora of available simulation platforms, many works in the literature propose
ways of integrating agent reasoning with existing platforms. It has been proposed a 3-tier
architecture (Singh et al. 2016) to develop such integration: a generic layer, a system
layer, and an application layer. This architecture, however, is aimed to complex systems
simulations with hundreds or thousands of agents. It is not meant to simulate control over
real hardware platforms and its interfaces. Also, our work avoids the need to program any
specific integration layer since it uses the operating system itself as an integration layer.

Similarly, another 3-layer architecture (Davoust et al. 2020) composed by a sim-
ulated environment, a state synchronization, and a BDI framework aims to solve this
challenge. This architecture has been also extended to work with ROS2 (Gavigan and
Esfandiari 2021b) by changing the simulated environment with ROS, which interfaces to
application nodes that finally interact with the environment, which can be a simulator.
This way, it uses 4 layers to implement the integration: the agent dimension, ROS, spe-
cific application nodes, and the environment. In contrast, our solution integrates the BDI
framework directly to the simulator by using the emulated serial channel, avoiding any
kind of integration layers between them.



Regarding educational approaches for teaching and learning agents theory and
practice, many works have proposed simulators or self-made tools in the literature. An
intelligent agents course, whose main objectives were to introduce the notion of MAS,
areas of applications, and its advantages for developing complex software systems, uses
the NetLogo as a simulation tool to assign assessed work to the students, citing their main
benefits of being easy to install and having many examples for the students to run (Sakel-
lariou et al. 2008). The work extended the NetLogo simulator with libraries to implement
BDI agents since this capability was not native to that simulator. The SimFleet (Palanca
et al. 2021) is used for a Master’s degree in an AI course. The goal is to represent open
fleets of vehicles and to allow the implementation of different negotiation and cooperation
algorithms. The tool uses SPADE3 (Palanca et al. 2020) for programming agents, which
defines a set of programmable behavior types that these agents can run. Then, the students
are tasked with implementing different customers’ behaviors.

Exploring the process of learning MAS is not new. However, they all have similar
approaches: they use a coupled endogenous environment to provide simulations or create
extensions to methodologies and agent-programming languages for existing simulators.
In our proposal, we decouple the environment from the reasoning layer, transferring the
responsibility of communicating with simulators and self-made applications to the OS’s
serial layer. The student focuses on the agent reasoning, abstracting simulation properties
in most cases.

Educational robotics activities have also been widely explored with MAS. For ex-
ample, three case studies help to understand how agents and hardware interfacing work:
a firefighting scenario, a robot drama, and using social robots to enhance student’s learn-
ing (Bravo and Páez 2023). The firefighting scenario provides a programming interface
for students and physical robots to deploy solutions. The programming interface allows
the description of the robot’s behaviors with a user interface (an application). However,
the solutions are generally dedicated to a specific robotic platform and do not adopt BDI
in the learning process. The BDI always imposes challenges when adopted in embedded
systems. The amount of perceptions and beliefs can lead to bottlenecks in processing
the upcoming events that agents must comply with. In our proposal, the reasoning layer
is decoupled from the environment, which means that both sides of the system can be
exchanged if desired. Furthermore, the Jason Embedded distribution has already tackled
several challenges in dealing with BDI agents and hardware interfacing.

7. Conclusion
This work presented an exogenous environment simulation approach using an emulated
serial communication where the agent can directly manipulate virtual devices. Further-
more, several proofs-of-concept of this approach were presented: one with an Arduino
simulator, a specific desktop application, and a robot simulator. Then, we built a real-
world robot, showing how easily we can deploy its MAS reasoning to it. Finally, we also
presented a report on an undergraduate course during an academic semester before and
after using the proposed approach, showing that it helped students implement and validate
their ideas easily. In educational embedded MAS scenarios, the students can now develop
the reasoning layer independent from the environmental layer, focusing on the learning
process of how the agents’ mind works. For future work, it is important to make available
other simulator examples to provide more options to the students.
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