
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/374091269

A middleware for providing communicability to Embedded MAS based on the

lack of connectivity

Article in Artificial Intelligence Review · September 2023

DOI: 10.1007/s10462-023-10596-z

CITATIONS

3
READS

69

6 authors, including:

Vinicius Souza de Jesus

Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ)

43 PUBLICATIONS 137 CITATIONS

SEE PROFILE

Nilson Lazarin

Federal Center for Technological Education Celso Suckow da Fonseca (Cefet/RJ)

133 PUBLICATIONS 259 CITATIONS

SEE PROFILE

Carlos Eduardo Pantoja

Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ)

179 PUBLICATIONS 440 CITATIONS

SEE PROFILE

Fabian Cesar Pereira Brandão Manoel

Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ)

32 PUBLICATIONS 124 CITATIONS

SEE PROFILE

All content following this page was uploaded by Nilson Lazarin on 06 November 2024.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/374091269_A_middleware_for_providing_communicability_to_Embedded_MAS_based_on_the_lack_of_connectivity?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/374091269_A_middleware_for_providing_communicability_to_Embedded_MAS_based_on_the_lack_of_connectivity?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vinicius-Souza-De-Jesus?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vinicius-Souza-De-Jesus?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Centro_Federal_de_Educacao_Tecnologica_Celso_Suckow_da_Fonseca_CEFET_RJ?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vinicius-Souza-De-Jesus?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nilson-Lazarin?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nilson-Lazarin?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nilson-Lazarin?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carlos-Pantoja-3?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carlos-Pantoja-3?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Centro_Federal_de_Educacao_Tecnologica_Celso_Suckow_da_Fonseca_CEFET_RJ?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carlos-Pantoja-3?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fabian-Manoel-2?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fabian-Manoel-2?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Centro_Federal_de_Educacao_Tecnologica_Celso_Suckow_da_Fonseca_CEFET_RJ?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fabian-Manoel-2?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nilson-Lazarin?enrichId=rgreq-62e1b678bb54ae297e244c36c2a7f1e7-XXX&enrichSource=Y292ZXJQYWdlOzM3NDA5MTI2OTtBUzoxMTQzMTI4MTI4ODg5ODYzMEAxNzMwOTIyNDI5OTI5&el=1_x_10&_esc=publicationCoverPdf

Noname manuscript No.
(will be inserted by the editor)

A Middleware for Providing Communicability to
Embedded MAS Based on the Lack of Connectivity

Vinicius Souza de Jesus · Nilson Mori
Lazarin · Carlos Eduardo Pantoja · Fabian
César Pereira Brandão Manoel · Gleifer
Vaz Alves · José Viterbo

the date of receipt and acceptance should be inserted later

Abstract An embedded Multi-Agent System (Embedded MAS) is an embed-
ded cognitive system based on agents cooperating to control hardware devices.
These agents are autonomous and proactive entities capable of decision-making
and can constantly acquire new knowledge via interaction with other agents and
the environment. Since the interaction between agents is relevant for acquiring new
knowledge, issues such as the communicability and mobility of agents from differ-
ent Embedded MAS must be highlighted. The classification of a MAS as Open or
Closed only considers the mobility of agents, but communicability also needs to be
considered. For this, we extend the notion of openness in these systems to consider
the existence of Totally Closed and Limited Open MAS, to consider agents from an

Vinicius Souza de Jesus
Fluminense Federal University
E-mail: vsjesus@id.uff.br
ORCID: 0000-0002-4534-6078

Nilson Mori Lazarin
Federal Center for Technological Education Celso Suckow da Fonseca
E-mail: nilson.lazarin@cefet-rj.br
ORCID: 0000-0002-4240-3997

Carlos Eduardo Pantoja
Federal Center for Technological Education Celso Suckow da Fonseca
E-mail: pantoja@cefet-rj.br
ORCID: 0000-0002-7099-4974

Fabian César Pereira Brandão Manoel
Federal Center for Technological Education Celso Suckow da Fonseca
E-mail: fabiancpbm@gmail.com
ORCID: 0000-0003-0614-0592

Gleifer Vaz Alves
Federal University of Technology - Paraná
E-mail: gleifer@utfpr.edu.br
ORCID: 0000-0002-5937-8193

José Viterbo
Fluminense Federal University
E-mail: viterbo@ic.uff.br
ORCID: 0000-0002-0339-6624

2 Vinicius Souza de Jesus et al.

Embedded MAS without the ability to move or communicate or when they lose
the ability to communicate but still can move to other systems. In cooperative
missions where several devices adopt Embedded MAS, they should not become
totally closed since they lose the ability to cooperate and could put the mission
at risk. Some existent works considering Embedded MAS relies upon IoT infras-
tructures to guarantee communicability and mobility. But, in cases where these
infrastructures are temporarily or permanently unavailable, the system becomes
totally closed. Even when alternatives exist, they do not use cryptography. There-
fore, we present a middleware for supporting the development of Embedded MAS,
considering radiofrequency ad-hoc communication to reduce the dependency on
centralized infrastructures. An extended protocol supports message exchange be-
tween devices using cryptography. We also present a proof of concept application
and a formalization of our model.

Keywords Embedded Multi-Agent Systems · Embedded Systems · Communica-
tion protocol

1 Introduction

A Multi-Agent System (MAS) is a group of agents pursuing common or conflict-
ing goals and acting upon a sphere of influence projected on a specific area of
a real or simulated environment (Wooldridge, 2009). Since intelligent agents are
autonomous and proactive entities built on software or hardware, they can be
employed in embedded systems to manage devices. Thus, an Embedded MAS is
defined as a group of software agents organized in a MAS acting to manage a
physical device where they are inserted, interfacing sensors and controlling actua-
tors (Brandão et al., 2021).

Some agents can move from one MAS to another (Pham and Karmouch, 1998).
These mobile agents depend on network infrastructure, the MAS capacity to allow
agents’ entrance and exit, and permissions from the MAS to enter or not in the
system at runtime. Then, a MAS — Embedded or not — can be Closed when
its agents cannot move to other systems or platforms or Open when agents are
allowed to leave and enter the system (Artikis and Pitt, 2008). However, the social
ability of agents to communicate with each other could affect the behavior of
Closed and Open MAS. For example, Closed MAS can allow agent communication
between different systems even if it is impossible for agents to move, as we can
observe in many agent programming languages (Hindriks et al., 1999; Busetta
et al., 1999; Bellifemine et al., 2007; Bordini et al., 2007; Dennis and Farwer, 2008).
But, if there is no native communication infrastructure available for that, or it is
temporally unavailable, or the responsible technology is permanently damaged,
the MAS becomes totally closed for both mobile agents and communication.

The same applies to Open MAS, which allows agent mobility, but communica-
tion could be somehow affected by external reasons or forbidden. For example, if
an Open MAS has different infrastructures for agent mobility and communication
with other systems, and, for any reason, the communication infrastructure fails,
the system becomes a Limited Open MAS. Communication is intrinsic, in this
case, since agents can move and communicate and then go back to their origin
MAS. However, it is risky to move in domains where agents can die or be pre-
dated (Jesus et al., 2021). Our extended classification considering Limited Open

Title Suppressed Due to Excessive Length 3

and Totally Closed MAS is essential since it poses challenges and concerns when
using Embedded MAS. The unpredictability of autonomous systems in real envi-
ronments could lead to Embedded MAS becoming Limited Open, or even Totally
Closed. It implies that the device is still functional but loses its social ability, which
is crucial for collaboration in some scenarios such as rescue and military.

Several works explore agents and embedded MAS on top of devices to act
proactively at the edge of Internet of Things (IoT) systems (Savaglio et al., 2016;
Hernández and Reiff-Marganiec, 2016; de Castro et al., 2022). However, there
is a dependency on communication network infrastructures (i.e., TCP/IP, IoT
middleware, 3G networks), which can compromise the system’s autonomy when
unavailable, turning the device into a Totally Closed system. Moreover, agent plat-
forms (Lazarin and Pantoja, 2015; Taboun and Brennan, 2017; Zhang et al., 2019)
and customized agent architectures (Jensen, 2010; Pantoja et al., 2016a; Manoel
et al., 2020) provide ad-hoc solutions to create Embedded MAS without social
ability making the device rely on IoT Architectures (Pantoja et al., 2018; Ham-
dani et al., 2022; Palanca et al., 2022) to communicate with other devices. The
main problem is that these works depend on IoT infrastructure and do not present
alternatives in critical situations (network unavailability) or communication secu-
rity in open channels. Besides, some of them consider ad-hoc solutions disregarding
any type of communication (Jensen (2010); Lazarin and Pantoja (2015); Pantoja
et al. (2016b); Manoel et al. (2020)).

One way to overcome this situation is to employ Radio Frequency (RF) gadgets
on devices since they use the air to broadcast messages. RF has been widely used
in robotics (Isma et al., 2022; Groshev et al., 2022) and telecommunications (El-
geziry et al., 2022; Kumawat, 2022). Still, when it comes to Belief-Desire-Intention
(BDI) agents embedded in devices, there is a lack of solutions and proposals that
minimize infrastructure dependency and guarantee proper communication between
embedded MAS from different devices. The BDI is a cognitive model that orga-
nizes the agent reasoning considering beliefs, plans, and actions to achieve goals
based on intention and desires (Bratman, 1987). However, purely RF adoption
raises some concerns. As it uses the air as a communication channel, anyone ac-
cessing the channel can capture the message since it travels without encryption to
secure the message content during the communication process. Besides, in some
situations, embedded MAS needs to communicate in groups differently from direct
communication with another device. Sometimes, it is interesting to adopt secure
channels for specific groups.

For example, in a scenario where autonomous vehicles — controlled by embed-
ded MAS — are on a faraway highway, and for any reason, the telecommunication
infrastructure is not available. On this highway, vehicles traveling could be from
two groups: civil vehicles from the general public, and public safety vehicles, from
police, support, hospital, and ambulances. If an accident happens, these vehicles
will not communicate unless equipped with RF to allow communication using
data dissemination through the air. In this case, the damaged vehicle could send
an unencrypted broadcast message to all nearby vehicles. If a public safety vehicle
receives the message, it can send an encrypted unicast message to the damaged
vehicle, informing that help is coming soon. Then, it could send an encrypted
multicast message to the public safety vehicles group to coordinate how they will
engage in helping the damaged vehicle. Notice that unicast and multicast also

4 Vinicius Souza de Jesus et al.

use RF and the air as a communication channel, but they use cryptography to
obfuscate the message.

This paper presents a middleware that offers a novel alternative communi-
cation channel using RF to avoid Totally Closed and Limited Open MAS situ-
ations in Embedded MAS using BDI agents. The middleware works based on a
new communication protocol that allows communication from controllers to con-
trollers using RF messages and between controllers and high-level programming
languages (the Embedded MAS). The protocol is not limited to RF messages. It
runs along with other communication infrastructures (3G, IoT, etc.) or when there
are no other methods available for communication, thus allowing a Totally Closed
MAS to transmit and send information to other devices. This behavior is innova-
tive in Embedded MAS since communication between devices without a central
infrastructure has not been explored concerning groups and cryptography.

The BDI agents interpret serial messages from sensors as beliefs and RF mes-
sages as social messages with an illocutionary force that defines the message’s
purpose. Three types of messages are available, broadcast messages without en-
cryption and unicast and multicast messages are encrypted using Advanced En-
cryption Standard (AES) 128 bits with Cipher Feedback (CFB) mode of operation.

With our middleware, it is possible to build Embedded MAS capable of keeping
a public air communication channel active independent of network infrastructure.
The device empowered by Embedded MAS can send messages in this public chan-
nel to reach nearby devices (broadcast). Furthermore, it can send secure messages
(cryptographed) to single devices (unicast) or a pre-defined group of devices (mul-
ticast). All of this is possible using the new agent architecture and a diffuse action
available for agents.

For this, we extend the Javino serial interface (Lazarin and Pantoja, 2015) to
allow end-to-end communication using Radio Frequency (RF) using the protocol
for sending broadcast, multicast, and unicast messages. We also extend the Ja-
CaMo framework (Boissier et al., 2013) by adding a customized agent architecture
to create an embedded MAS with hardware interfacing capability and, simulta-
neously, to send and receive RF messages. We assembled three vehicle prototypes
considering the scenario described above as a proof of concept that the middleware
properly works using RF channels. The main contributions and novelties of this
paper are:

1. a novel middleware for supporting the development of embedded MAS to pre-
vent the lack of connectivity;

2. the protocol for message exchange;
3. the new BDI agent architecture able to understand protocols’ messages as BDI

constructions;
4. extended definitions for openness in MAS;
5. a complete proof of concept is presented, where prototypes are embedded with

agents using encrypted messages for communication and endowed with a for-
malization model to guarantee the communication protocol properly works.

This work is organized as follows; in Section 2, some theoretical background
is discussed and the new definitions of Open and Closed MAS are presented; in
Section 3, we show some related works in the embedded MAS domain considering
the last five years; Section 4 shows details of the proposed protocol and its imple-
mentation; in Section 5 presents the proof of concept applied in a case study with

Title Suppressed Due to Excessive Length 5

vehicles prototypes. Finally, Section 6 concludes the paper by presenting the final
considerations and directions for future works.

2 Theoretical Background

The agent theory has been widely employed in many cyber-physical domains dur-
ing the past years (Leitão et al., 2016). Autonomous agents have pro-activity, social
abilities, autonomy, and also mobility (Wooldridge, 2000). Mobile agents can move
from one Open MAS to another if there is an external infrastructure available for
agents to travel, and the Open MAS allows the entrance and exit of agents from
it. Conversely, a Closed MAS is the common vision of MAS, where agents can only
exist in their system without network infrastructure or permissions for agents to
move from one system to another.

However, classifying a MAS as open or closed just by observing its ability
to allow agents’ mobility is limited when considering Embedded MAS. In these
cases, a MAS is responsible for controlling a device guaranteeing autonomy and
pro-activity by accessing actuators, sensors, and communication infrastructures.
In another way, an Embedded MAS is an embedded system that depends on hard-
ware, including communication infrastructure, to maintain the social ability and
communicability of the device (Brandão et al., 2021). Therefore, agents from a
Closed MAS can still communicate with agents from another MAS and be for-
bidden to leave the system. Similarly, an Open MAS could allow agent mobility,
despite direct communication could be unavailable (considering that the MAS uses
different infrastructures for communication and mobility). Direct communication
happens in an Open MAS when two agents in different MAS exchange messages
without leaving their systems. Then, we define direct communication as follows:

Definition 1 Direct Communication is an end-to-end message exchange between
two agents hosted in different MAS using any communication infrastructure.

Afterward, we extend the traditional definitions of Open and Closed MAS
and define two new classifications: Limited Open MAS and Totally Closed MAS,
considering the social ability of communication.

Definition 2 An Open MAS is an agent-based system that allows mobile agents
to enter and leave the system and direct communication between agents from
different MAS.

In this case, if an Embedded MAS is an Open MAS, its agents could leave and
enter the system anytime they want and perform direct communications with other
Embedded MAS. For example, two independent, autonomous vehicles controlled
by different Embedded MAS: one agent from one vehicle can communicate with
another agent from the second vehicle performing direct communication. Still,
some of their agents could move to the manufacturer’s headquarter to improve
their abilities.

Definition 3 A Closed MAS is an agent-based system that does not allow agents
to enter and leave the system but allows direct communication between agents
from different MAS.

6 Vinicius Souza de Jesus et al.

This case is the most common appearance in MAS development since most
agent-oriented programming languages and frameworks allow creating communi-
cation structures (e.g., artifacts) or using an existing one. Still, agents cannot move
from one system to another. In Closed MAS, the behavior is quite similar to the
Open MAS. However, the agents could not move because it was a design-time
decision or the mobility ability was damaged or intentionally turned off.

Definition 4 A Limited Open MAS is an agent-based system that allows mobile
agents to enter and leave the system but does not allow direct communication
between agents from different MAS.

It is the opposite of the Closed MAS. Agents can move to a different MAS
but cannot exchange messages by performing direct communication. However,
agents can still communicate locally or move to another system and exchange
messages into the addressed system. Real environments where Embedded MAS
acts pose several challenges due to unpredictability and the amount of informa-
tion and agents are exposed to many hazards when moving from one system to
another. So, designing an Embedded MAS as a Limited Open MAS is not an
immediate decision and sometimes depends on the communication infrastructure
available. Regardless of the designer’s decisions, any communication infrastructure
can become unavailable for many reasons (e.g., physical attacks and malfunction-
ing). In these cases, Embedded MAS will become temporally or permanently a
Limited Open MAS. For example, a vehicle could crash and damage the RF sen-
sor responsible for direct communication with other vehicles, but they could still
have available telecommunication infrastructure such as the Internet.

Definition 5 A Totally Closed MAS does not allow agents to enter and leave the
system, nor does direct communication between agents from different MAS.

It is the more restrictive case possible that an Embedded MAS can assume.
Despite the mobility and communicability restrictions, a Totally Closed MAS as
an Embedded MAS is a typical configuration when considering ad-hoc solutions
where there is no need for distributed computing among several devices. The Em-
bedded MAS can sense the environment, act upon it, and be autonomous and
proactive, but it does not communicate with any other entity. However, communi-
cation is essential when it is necessary for cooperation between several Embedded
MAS, so Totally Closed MAS should be avoided. Moreover, damages and unavail-
ability can lead to a Totally Closed MAS situation. In Table 1, we present the
new classification from a more restrictive to a less restrictive behavior of a MAS,
comparing the existence of mobility and communicability.

Table 1 MAS classification considering mobility and communicability.

Totally
Closed MAS

Limited
Open
MAS

Closed MAS Open MAS

Mobility - ✓ - ✓

Communicability - - ✓ ✓

Classifying MAS by considering both mobility and communicability when us-
ing Embedded MAS can help the device’s designer understand which components

Title Suppressed Due to Excessive Length 7

to use and how to prepare backup functionalities based on what is necessary to
attend to the application domain requirements. A Totally Closed MAS is an un-
desired configuration in distributed systems with collective goals because it can
isolate a device from its team. Once missions and goals can change based on
the unpredictability of dynamic environments, an incommunicable device cannot
update its goals and missions, despite maintaining autonomy, pro-activity, and
reasoning ability. It might even compromise the global mission without coordinat-
ing with its pairs. For example, all other MAS classifications have at least one way
of communicating, which can be used for coordination.

Since an Embedded MAS manages hardware and uses external communica-
tion infrastructures, it is not guaranteed that they will be forever functional and
available. Both hardware and communication infrastructure could experience mal-
functioning, instabilities, and damage in an ongoing mission. When this happens,
one Embedded MAS can move from one state to another, causing several con-
cerns already discussed before. For this, we define a Finite-State Machine (FSM)
to model the behavior of these transitions to guide the designer during the Em-
bedded MAS and device creation. The FSM diagram can be seen in Figure 1. The
symbols of the alphabet used in the FSM are defined:

-com means lost of communicability.
+com means the communicability has been restored.
-mob means lost of mobility.
+mob means the mobility has been restored.

Open Limited Open

Closed Totally Closed

-com

+com

-mob

+mob

+com

-com

+mob

-mob

Fig. 1 FSM for the behavior of the Embedded MAS transitions.

Therefore, it is important to provide mechanisms in practical applications of
Embedded MAS to guarantee — or least avoid — that a MAS does not become
a Totally Closed MAS. Although, it is tied and limited by the existing frame-
works, middleware, programming languages, and platforms. They must provide
constructions to allow agents to move, communicate, and connect to heterogeneous

8 Vinicius Souza de Jesus et al.

hardware devices. In this work, we present a middleware that provides support to
prevent the Embedded MAS from becoming Totally Closed and Limited Open
MAS.

3 Related Work

The definition of Embedded MAS considers a whole MAS with several agents
cooperatively controlling the hardware parts to provide autonomy to the device
where the MAS is hosted or embedded. During the years, several works employed
Embodied and Embedded MAS, where BDI agents are only capable of communi-
cating to agents of their system (Castro et al., 2018; Heijmeijer and Alves, 2018;
Sakurada et al., 2019; Manoel et al., 2020). As Totally Closed MAS, these works
are ad-hoc solutions built up for a dedicated purpose, and interactions with other
embedded solutions are discarded. For these systems to become a Closed or Lim-
ited Open MAS, they need to add mechanisms at design or runtime to allow some
communication or mobility; on the other hand, they would need both to become
Open MAS. Castro et al. (2018) and Heijmeijer and Alves (2018) provided virtual
solutions using JaCaMo that do not use hardware devices but could be extended to
embedded solutions. Sakurada et al. (2019) and Manoel et al. (2020) use physical
devices to implement embedded systems by adopting Java Agent DEvelopment
Framework (JADE) (Bellifemine et al., 2007) and JaCaMo, respectively, on top of
single-board computers. In these works, agents from one Embedded MAS accessing
hardware resources can communicate with other agents from different Embedded
MAS using RF if there are no available nearby networks. So, our solution avoids
ad-hoc agents and MAS. Besides, all works above depend on the network structure
and do not present alternatives for the MAS. By adopting our proposed middle-
ware, any embedded system could adopt any communication infrastructure and
use RF communication as an alternative infrastructure. In this way, the Embedded
MAS will only become Totally Closed if it loses both communication infrastruc-
tures.

From this point on, works provided Closed MAS solutions dependable on ex-
ternal communication infrastructures. Pantoja et al. (2020) extended the notion of
Things from IoT to Smart Things using a BDI agent and considered an architec-
ture supported by an IoT middleware running at a centralized server. Moreover,
Silva et al. (2020) and Michaloski et al. (2022) extended Jason and Gwendolen,
respectively, to use Robot Operating System (ROS) as an interface to hardware
components. Michaloski et al. (2022) also uses the Canonical Robot Command
Language and Gazebo in robot planning. As these works employ ROS, they could
be extended at design time to allow mobility and communication simultaneously
since ROS is a robust middleware. Despite becoming Open, they will still be de-
pendent on the network (local or internet). Our work allows us to employ an
alternative channel to avoid this dependence on centralized architectures. In this
channel, the Embedded MAS can cooperate, exchanging messages with nearby
devices. We propose to avoid the Embedded MAS becoming Totally Close until it
can find another available network or restore the original one.

The same occurs in the solutions proposed by Jesus et al. (2021), Brandão
et al. (2021) and de Castro et al. (2022). These works allow the designer to create
an Embedded MAS able to move to another Embedded MAS and to communicate

Title Suppressed Due to Excessive Length 9

using different mechanisms. But in the end, they rely on middleware and networks
as well. Jesus et al. (2021) proposed bio-inspired protocols for transferring agents
and their mental state to another hardware at runtime. Brandão et al. (2021)
proposed edge-computing approaches considering BDI agents and artifacts running
on top of devices. Both used JaCaMo and ContextNet (Endler et al., 2011).

Moreover, some works in the literature do not depend on network infrastruc-
ture, using a decentralized strategy, such as Wireless Sensor Networks (WSN).
These works also explore energy efficiency to reduce the energy consumption of
network nodes (each node operates only via in-built batteries) and routing network
data traffic to find optimal routes (with the shortest path on the network). These
characteristics are addressed in works that improve the resilience of a network.
However, even though these works are fault-tolerant, they do not present agent
mobility (characterizing them as Closed). Finally, they do not employ MAS, BDI
agents, and Embedded MAS(Al-Otaibi et al. (2021); Mansour et al. (2022)).

Considering applications with agents and decentralized network strategies, the
Ortiz et al. (2022) paper presents an architecture focused on IoT using different
layers such as edge, fog, and cloud together to allow the management of resources.
The authors provided a MAS application allowing agents to communicate via
IoT using the JADE. However, as it does not allow the mobility of agents, the
MAS is Limited Open. In the Machine Learning (ML) literature, several works
focus on data traffic on the network, which allows the identification of fraudu-
lent transactions Aziz et al. (2022) and tools to support the development of new
solutions Khalajzadeh et al. (2020). However, these works do not have all mecha-
nisms to allow the development of an Open Embedded MAS (with agents able to
communicate and move to other MAS).

The proposed middleware fills a gap left by previous works in supporting the de-
velopment of Embedded MAS considering the new classifications (Totally Closed,
Closed, Open Limited, and Open). It allows the communication and mobility of
agents between different MAS without the dependence on network infrastructure.
Table 2 is shown the related works and their classification according to the com-
municability and openness of a MAS. Besides, it also highlights those dependent
on any communication or mobility infrastructure and if it has an alternative mech-
anism to avoid Totally Closed MAS.

The recent solutions using Embedded MAS found in the literature are Closed
or Open MAS. It is not trivial to develop Embedded MAS since various hardware,
software, and middleware technologies need to be integrated to provide a functional
platform for controlling devices autonomously. It gets more complicated when
applying the BDI cognitive model once its reasoning cycle’s processing is costly in
several programming languages and frameworks (Stabile Jr. and Sichman, 2015;
Stabile Jr. et al., 2018). Then, it is straightforward to develop Totally Closed
systems, and efforts have been made to overcome this issue. However, even systems
there are Closed or Open (with some mobility or communication) can become
Totally Closed at runtime. Our solution aims to overcome this issue by offering an
alternative communication channel to the system’s designer to create Embedded
MAS.

10 Vinicius Souza de Jesus et al.

Table 2 Comparison between the related work.

Work Classification Dependency Alternative

Castro et al. (2018) Totally Closed - -

Heijmeijer and Alves (2018) Totally Closed - -

Sakurada et al. (2019) Totally Closed - -

Manoel et al. (2020) Totally Closed - -

Pantoja et al. (2020) Closed ✓ -

Silva et al. (2020) Closed ✓ -

Khalajzadeh et al. (2020) Closed ✓ ✓

Jesus et al. (2021) Open ✓ -

Brandão et al. (2021) Open ✓ -

Al-Otaibi et al. (2021) Closed ✓ ✓

Mansour et al. (2022) Closed ✓ ✓

Ortiz et al. (2022) Closed ✓ ✓

Aziz et al. (2022) Closed ✓ ✓

de Castro et al. (2022) Open ✓ -

Michaloski et al. (2022) Closed ✓ -

Our approach Open ✓ ✓

4 The Javino Middleware for Embedded MAS

Communication is essential in devices with embedded systems (Mundhenk et al.,
2022), including MAS, as it allows data obtained from sensors’ readings and inter-
nal conclusions to be forwarded to other devices. Otherwise, even if endowed with
cognitive and autonomous capacity, any embedded system would depend only on
its observations and conclusions for decision-making and learning. Besides, some
communication channels depend on centralized infrastructure (Endler et al., 2011),
which leads to a technological dependency. Totally Closed or Limited Open MAS
can lead Embedded MAS to be disconnected from other sources of information
and unable to share information with other devices. It could be solved by adopt-
ing dedicated hardware for communicating, such as radiofrequency devices, as an
alternative communication channel when other channels are unavailable. It could
also be a primary communication channel if all devices operate in a short range.

The middleware presented in this paper allows devices running Embedded
MAS to communicate using RF as an alternative to avoid the embedded system
from becoming a Totally Closed MAS. The middleware allows Embedded MAS to
communicate with others Embedded MAS using a protocol to exchange messages
between individuals or groups. As the air is the communication channel, informa-
tion is still exchanged in clear messages. Then, the protocol provides encryption
techniques to guarantee the privacy of individual and group messages by sending
unicast and multicast messages. Thus, an Embedded MAS can send information
individually to another Embedded MAS, to a group, or to everyone within the
transmission range (broadcast), using one of the three sending modes:

– Unicast : Message sent from one device hosting an Embedded MAS to another
specific device within the transmission range.

– Multicast : Message sent from one device hosting an Embedded MAS to an
addressed group of devices within the transmission range.

– Broadcast : Message sent from one device hosting an Embedded MAS to all
devices within the transmission range.

Title Suppressed Due to Excessive Length 11

Therefore, an Embedded MAS is responsible for sensing an environment using
a set of sensors, processing, and analyzing the captured data. After deliberation, it
can act in the same environment or send messages to nearby devices. The Embed-
ded MAS can send unicast messages directly to other devices or all nearby devices
by broadcasting a message. Sometimes, devices could be organized in groups, and
messages can be sent to a specific group instead of a device. In this case, all devices
of the addressed group. For example, in the early scenario of autonomous vehi-
cles running Embedded MAS, a damaged vehicle sends a broadcast message to all
nearby autonomous vehicles. Any vehicle that receives the message could redirect
it to a Support Point or a public safety vehicle. Once the accident is identified, the
public safety vehicles can cooperate to help the damaged vehicle by exchanging
multicast messages privately since they are organized into a group.

The middleware — named Javino — is a double-side library for exchanging
serial messages between microcontrollers and high-level programming languages
built over a secure end-to-end protocol, which addresses standalone and groups
of devices. JaCaMo agents, based on a customized agent architecture to diffuse
messages, access the Javino middleware to send and receive messages from another
JaCaMo Embedded MAS. This Diffuser agent has a modified reasoning cycle to
access the microcontroller to retrieve sensors’ data as perceptions and messages
and send actions to actuators and messages to other Embedded MAS. Every device
with Embedded MAS has a unique identification stored in the microcontroller and
Diffuser agent. This identification is part of the protocol and identifies the device
and its group.

In this work, a physical architecture is adopted to allow the interconnection
of hardware components so that it is possible to enable a flow of direct percep-
tions from sensors and messages from RF devices to agents in an Embedded MAS.
In the opposite direction, the physical architecture allows agents to send actions
performed by actuators and messages to other Embedded MAS. Physically, the ar-
chitecture follows a traditional well-established architecture (Matarić, 2007) using
heterogeneous hardware devices and microcontrollers, serial communication, and a
computer-based board capable of hosting an operational system and an Embedded
MAS. This physical architecture is not an innovation and has been described and
adopted in many works employing Embedded MAS (Barros et al., 2014; Pantoja
et al., 2016b; Manoel et al., 2017; Pantoja et al., 2020; Jesus et al., 2021; de Castro
et al., 2022).

Logically, agents from the Embedded MAS are in charge of all physical compo-
nents of their device. The Embedded MAS is responsible for reasoning considering
all gathered perceptions, messages exchanged, and internal conclusions. Agents
can perform actions and send messages once a deliberation exists that should be
forwarded to actuators or communicated. The decision to perform an action or
send a message is part of an agent’s reasoning, which forwards serial messages to
the firmware using wired serial communication and the Javino. Since an Embedded
MAS controls the local physical components, wired connections bring reliability
and simplicity since there is no competition to access the hardware. Afterward,
the microcontroller’s firmware redirects the messages received to the RF respon-
sible for broadcasting and all actions to be performed by actuators. The firmware
is also responsible for the functions that read sensors’ information, and RF mes-
sages received, mount them as perceptions, and send them to agents using serial
communication. The architecture can be seen in Figure 2. It has four logical layers:

12 Vinicius Souza de Jesus et al.

1. Reasoning: It is the layer responsible for the device’s cognition. An Embed-
ded MAS interfaces the device’s sensors and actuators using a serial interface,
receiving perceptions or messages from other devices, deliberating and respond-
ing with actions to be performed on the actuators or messages to other devices.
The Diffuser agent acts in this layer by accessing the high-level programming
library of Javino middleware.

2. Serial: The layer interfaces the data traveling between the Embedded MAS
and the adopted hardware. Serial communication complies with an information
exchange protocol (Subsection 4.1) that guarantees messages exchange between
individuals and groups and sensors’ readings.

3. Firmware: The program is embedded in the microcontroller, where sensors
and actuators’ behaviors are programmed. Sensors’ data become perceptions,
and RF messages become agents’ messages. They are sent to the Embedded
MAS using the low-level library of Javino middleware when agents request.
Moreover, agents can send actions to control actuators, and messages are sent
to another device according to the agent’s goals.

4. Hardware: These are all sensors and actuators available on the device and
connected to the chosen microcontroller. These sensors and actuators produce
the information that will be transformed into perceptions and receive messages
sent to the Embedded MAS and other devices. This layer includes the RF
sensor for communication with other devices.

Fig. 2 The Embedded MAS architecture overview.

The reasoning layer was extended by implementing Diffuser agents for man-
aging messages via RF. Moreover, at the serial layer, the Javino middleware was
extended to capture messages via RF with a new communication protocol that
allows addressing messages to a specific (unicast), a group (multicast), or any
receiver within the range of the RF emitter (broadcast).

The process for sending RF messages starts with the Diffuser agent capable of
sending a text message to Javino (Serial layer). It encapsulates the text message
by inserting fields to identify the sender, receiver, and message size (number of
characters). After the message is encapsulated, the Javino sends them to the mi-
crocontroller (Firmware layers). By Javino’s fields of the encapsulated message,

Title Suppressed Due to Excessive Length 13

the microcontroller identifies the type of message (unicast, multicast, or broadcast)
and, based on that, encrypts or not the message. In case of the message is unicast
or multicast, it is encrypted; otherwise, it is a broadcast type message, so it is not
encrypted to travel in plain text for any RF receiver.

The receiver listens to the public channel using the RF receptor and, when
capturing a message, forwards them to the microcontroller (Firmware layer). In
the firmware layer, the message is decrypted, becoming an encapsulated message,
and sent to Javino. In Javino, the encapsulated message fields are confirmed,
and content integrity verification is performed based on the message size field. If
all verifications are performed successfully, the text content of the encapsulated
message is sent to the Diffuser Agent. Finally, the Diffuser agent transforms the
text message into a belief, perception, or intention. In Figure 3, it is possible
to see these procedures for sending and receiving messages via RF between two
Embedded MAS.

Fig. 3 Physical and logical architecture for an Embedded MAS considering the proposed
protocol.

We named the middleware Javino since its initial purpose was to exchange
messages between the Java programming language and Arduino boards. Despite
the name, it can be used with other microcontrollers (Guinelli and Pantoja, 2016)
and programming languages since it relies on a message-exchanging protocol. It
showed reliability in supporting the development of Totally Closed and Limited
Open MAS for Embedded MAS in previous versions (Lazarin and Pantoja, 2015;
Junger et al., 2016) and some agent architectures (Pantoja et al., 2016a, 2018;
Manoel et al., 2020). But the Limited Open solutions depended on IoT infrastruc-
tures, and the Totally Closed solutions were too restrictive considering cooperative
applications. It is important to remark that the Javino middleware works for any
micro-controlled solution even though it does not use Embedded MAS.

14 Vinicius Souza de Jesus et al.

4.1 End-to-End Communication Protocol

When one device sends a message to the other device, the Diffuser agent from
the Embedded MAS accesses the serial interface using Javino, which redirects to
the microcontroller the message with information from the sender, addressee, the
illocutionary force, and the message’s content. At the microcontroller low-level,
the Javino receives and diffuses the message through RF. Once the target device
receives a message addressed to it, the message is handled by Javino and sent to
a MAS agent using the serial port. The agent will be in charge of managing the
message once it arrives at the Embedded MAS. Every RF message is executed
in two steps: one serial communication from the Embedded MAS to the micro-
controller (serial communication) and a diffusion message using the RF (air). The
illocutionary forces are KQML performatives used by agents in communication. It
represents the context and intention in a message exchange between agents.

The RF listens to the channel in the microcontroller until it receives a message
and buffers it. Then, the Javino will evaluate the header of the message to verify
if it is a valid message based on the expected format by the protocol. The message
is evaluated by comparing the value in the size field, informed in the header and
the received message size. Moreover, it identifies the message type, the destination
address, and the addressed group. Messages of the type: broadcast are always
accepted; the multicast messages are destined for the device’s group, and; the
unicast message is destined for the device’s identification. If something goes wrong
during the verification process, the message is discarded. Otherwise, the message
is received and buffered until the Diffuser agent request it. The process can be
seen in Figure 4.

Fig. 4 Message reception on the broadcast medium.

The protocol uses 24-bit addressing where the 12 most significant bits identify
the group, and the 12 least significant bits represent the group member. The
address uses the 64-Base Alphabet, so characters from A to Z — uppercase and
lowercase — and + and / can be used. Up to 16,252,928 devices can be identified in
3968 groups of up to 4096 members each, starting in AAAA until 9///. The special
addresses //AA to ///+ are used for multicast messages, and a multicast address
starts with // followed by two characters that represent the identification of the

Title Suppressed Due to Excessive Length 15

group. Besides, the special address //// indicates broadcast communication, and
the ++++ special address indicates serial communication from the microcontroller
to high-level programming languages. The message’s header has three fields: a
24-bit representing the device addressee, a 24-bit representing the device sender,
and the message Size in bits using 12 bits. Figure 5 shows a broadcast message
originated by the member FE of the CA group. The address format is shown in
Figure 6, and the addressing range is shown in Table 3.

Table 3 The address range of the protocol

Type From To Description

Addressable A A A A 9 / / /
3968 groups [AA até 9/]
4096 member per group

Reserved + A A A + + + 9 for future use
Reserved + + + / / + / / for future use
Multicast / / A A / / / + format //[group]
Special + + + + serial communication with hardware accessing
Special / / / / broadcast communication

Fig. 5 The group and member addressing.

Fig. 6 The addressing.

Figure 7 shows 5 Embedded MAS that implements the Javino middleware
with RF communication divided into three groups: CA group, with FE and PU
members; CH group with AF, PO, and TE members; finally, the TA group, with
only one member, the TU. In addition, CH members can be observed performing
a multicast communication. The MAS CAFE sends a unicast message to the MAS
TATU, and the MAS TATU sends a broadcast message to all MAS.

16 Vinicius Souza de Jesus et al.

Fig. 7 General Communication.

The special address for serial communication is important when considering
Embedded MAS or Embedded Systems. First, serial communication is one way
to transfer sensor data to a system and receive actions. Then, when using an
Embedded MAS, the data can go direct to agents. In this paper, the serial com-
munication is wired between the microcontrollers and the board that hosts the
Embedded MAS. So, serial communication is dedicated to exchanging messages or
data and actions transferring between hardware and embedded system. It avoids
conflicts in accessing the serial ports and unauthorized access to the hardware.

The number of possible devices the protocol addresses is enough for small and
medium applications in any domain. In domains that require a vast amount of
intelligent devices in a wide-area cooperating, such as smart cities, 16 million could
not be enough depending on the size of the city and devices, the number of groups
necessary, and how many devices are in each group. However, we assert that, even
in large applications, the protocol could assist in specific services. Smart cities
are composed of heterogeneous solutions integrated to manage a city’s resources.
Then, Javino middleware and Embedded MAS could be used as one of these many
possible solutions.

Using RF communication to exchange information between MAS presents some
challenges; security is one of the most important. As the network is open, without
infrastructure, and accessible to any member within the radio range, interference
in this network can easily be carried out by malicious users. Therefore, making
communication secure and protected by encryption is mandatory. To encrypt the
information, we chose to use Advanced Encryption Standard (AES), as it presents
suitable hardware and software performance on a wide variety of computing plat-
forms and can be executed in environments with energy and processing restrictions,
such as the Arduino platform (Guinelli et al., 2018). Encryption was implemented
in the firmware layer of the embedded MAS, enabling secrecy in exchanging mes-
sages between MAS. For this, we used the library Security-Vanets (Freitas et al.,
2021) as a base, a fork of the Securino library that implements the protocol pre-
sented in Lazarin et al. (2021), enabling broadcast communication via RF trans-
mission for Arduino platforms. In this work, we carried out an expansion of the
library that now allows the exchange of broadcast messages in clear, the exchange

Title Suppressed Due to Excessive Length 17

of multicast and unicast messages encrypted in Cipher Feedback Mode (CFB) with
random initialization vector.

4.2 Diffuser Agent Architecture

The Javino middleware allows one Embedded MAS to exchange messages with
another Embedded MAS using the RF addressing which device is the sender and
the addressee. But, in practice, the Embedded MAS cannot send a message to
another since it is a collective of agents managing physical resources. So, one agent
from the Embedded MAS must become responsible for interfacing RF messages.
This agent will store the identification of the protocol and every message diffused
to the device the agent will handle. For this, this Diffuser agent must act and
comply with the message format of the framework adopted, the JaCaMo. For an
agent to send a message using JaCaMo, three mandatory fields must be informed:
the receiver name, the illocutionary force, and the message itself. The Diffuser
agent will adopt the same format and fields, but instead of the agent name, it will
address the device identification provided by Javino’s protocol.

Thus, we established that an Embedded MAS has only one Diffuser Agent
responsible for handling messages coming from RF. This agent may have any name
but holds the device identification. In this first moment, only the illocutionary
forces tell, untell, achieve, and unachieve will be considered because they have a
smaller message size than tellHow and askHow — used to send an entire plan
with its actions — given the limit of the message field of the protocol. The tell
and untell forces inform or ask to remove a belief from one Embedded MAS, and
the achieve and unachieve inform an intention to be followed or unfollowed.

The Diffuser agent sends a message using the internal action named Diffuser,
explicitly created to send messages via diffusion using the proposed protocol. For
this, we present a customized agent architecture for JaCaMo where Diffuser agents
can interface hardware resources by accessing the serial port to request perceptions
and diffused messages using Javino middleware to send actuators’ actions and dif-
fuse messages. As BDI agents have a well-defined reasoning cycle (Bordini et al.,
2007), it is not possible for the microcontroller to directly send or receive messages
to the Embedded MAS without proper synchronization. The agent may have been
deliberating an intention and lost the messages sent. Thus, we extended the Dif-
fuser agent’s reasoning cycle (Figure 8), adding the Javino middleware before two
steps at the beginning of the cycle: the perceive, responsible for gathering percep-
tions from an internal (endogenous) environment, and checkMail, which verifies if
the agent received any messages from other agents of its MAS. The Javino replaces
the endogenous with an exogenous environment by allowing perceptions to come
from real sensors. Messages can now come from other agents of its Embedded MAS
and other Embedded MAS by diffusion.

Moreover, we also added the Javino middleware at the end of the reasoning
cycle after the act and sendMsg steps. The act is the execution of an action selected
from a plan, and the sendMsg is a particular action that sends internal messages
to other agents. Then, the Javino middleware allows actions to be forwarded to
actuators and messages to be diffused to the RF. Adding Javino at both the
beginning and end of the reasoning cycle synchronizes the data gathering avoiding
the loss of messages during the serial communication. Besides, the microcontroller

18 Vinicius Souza de Jesus et al.

is set as slave hardware where the agent decides when to get data. For instance,
agents get perceptions and messages once per cycle. But actions and messages are
sent when they deliberate for so.

Fig. 8 The reasoning cycle of a Diffuser Agent.

Every time an agent performs a perception or message request using Javino
in the BDI cycle, it sends to the microcontroller a serial message using the ad-
dress ++++, which answers back forwarding perceptions or messages available.
Moreover, whenever an agent sends a message addressed to an Embedded MAS,
it encodes the message content before forwarding it to the microcontroller. At
the low level, the message is diffused using the receiver address identified by the
sender agent. When the target device receives the message, it stores it in a tempo-
rary buffer until the Diffuser agent from its Embedded MAS requests the received
messages.

To facilitate the programming of Diffuser agents using JaCaMO, we created
the following internal actions:

– .setMyRFId(CAFE) allows the agent to set their identification address for RF
communication.

– .getRFMessages(open—block) allows the agent open and block the RF com-
munication channel.

– .diffuse(recipient, force, message) allows the agent to diffuse messages with
others Embedded MAS using RF communication.

For instance, the Embedded MAS must have one Diffuser agent so that the
message addressing is centralized in only one entity. The existence of more than
one Diffuser agent does not restrain the Embedded MAS operation. However, a
competition for the acquisition of messages will be generated, obliging the Embed-
ded MAS designer to reproduce the plans on all Diffuser agents or communicate
if a message is not the responsibility of whoever captured it. Furthermore, it is
recommended that each Embedded MAS adopt at least one dedicated microcon-
troller for RF communication to act separately as a support if the communication
infrastructure or the main microcontroller fails. Again, using a Diffuser agent to

Title Suppressed Due to Excessive Length 19

manage other actuators and sensors in addition to RF does not interfere with cap-
turing perceptions or messages, as these occur in different steps of the reasoning
cycle.

5 Proof of Concept

To demonstrate the middleware’s functioning, we present a case study where a
prototype embedded with a MAS does not become Totally Closed even if it does
not have access to communications infrastructures. The case study considers the
previous highway scenario where Embedded MAS controls civil and public safety
vehicles without access to any communication infrastructure, except for the RF
communication in each vehicle. In case of an accident, the car that suffers the
accident sends a message (broadcast) to the other vehicles in proximity, asking for
help. In addition, it can diffuse the message to public safety vehicles, which will be
able to communicate with individuals from the same group (unicast and multicast)
to provide the necessary assistance to the damaged vehicle. The scenario starts
when a civilian vehicle (bus) suffers an accident and sends a message requesting
help (broadcast). A police vehicle close to the scene receives the message and
diffuses it to another member of the public safety group (multicast) named the
support station. The support station diffuses the message to a hospital, and the
hospital sends an ambulance to the place of the accident. Finally, the support
station receives the message informing that the ambulance is on its way (unicast)
and diffuses it to the police vehicle, which diffuses a message to the damaged
vehicle.

5.1 Case Study

As the Embedded MAS employs AgentSpeak (Rao, 1996) interpreted by Jason
framework to develop cognitive agents, each agent expected behavior must be
codified in plans and messages that could activate these plans. Table 4 summarizes
all expected behaviors from vehicles and their respective roles in the scenario. Each
behavior can reflect a message sent or start with a triggering message.

For example, the damaged vehicle could be identified as ROMA, where MA is
his identification in group RO. The public safety vehicles could be composed of the
Police, Support, Hospital, and Ambulance. The Police vehicle could be identified
as SUPO, the Support as SUPP, the Hospital as SUHO, and the Ambulance as
SUAM. All vehicles are in the same group, the SU. When the damaged vehicle
sends a broadcast message, it does not need to address a specific individual or
group. It can send to the broadcast address (////). The public safety vehicles
can send a multicast message to all group members by addressing just the target
group by canceling the first two characters of the identification. In this case, a
message should address the identification SU//. The message should address all
four characters for personal communication (unicast message). To send a message
to the damaged vehicle, one should use ROMA. Figure 9 shows the complete
scenario of our approach using Javino for the embedded MAS.

20 Vinicius Souza de Jesus et al.

Table 4 The expected behaviors from the vehicles

Vehicles Expected Behavior Triggering Message

Bus
Request help

Send broadcast :
+help

Wait for Ambulance rescue
Wait unicast from Police:

+helpComing

Police

Receives help request from Bus
Diffuses to Support the help request

Wait broadcast from Bus:
+help

Send multicast :
+someoneNeedHelp

Receives that Ambulance is coming
Diffuses to Bus Ambulance is coming

Wait unicast from Support:
+helpComing

Send unicast to Bus:
+helpComing

Support

Receives help request from Police
Diffuses to Hospital the help request

Wait multicast from Police:
+someoneNeedHelp

Send unicast to Hospital
+someoneNeedHelp

Receives that Ambulance is going
Diffuses to Police Ambulance is going

Wait unicast from Hospital:
+helpComing

Send unicast to Police:
+helpComing

Hospital

Receives help request from Support
Diffuses to Ambulance the help request

Wait unicast from Support:
+someoneNeedHelp

Send unicast to Ambulance:
+someoneNeedHelp

Receives that Ambulance is going
Diffuses to Support Ambulance is going

Wait unicast from Ambulance:
+ambulanceIsGoing

Send unicast to Support:
+helpComing

Ambulance
Receives help request from Hospital

Diffuses to Hospital Ambulance is going

Wait unicast from Hospital:
+someoneNeedHelp

Send unicast to Hospital:
+ambulanceIsGoing

5.2 Formalization and Formal Verification

As previously mentioned, we need to use formal techniques to verify whether or not
our model works as designed. In this section, we present the formalization model
together with its corresponding simulation and formal verification. For that, we
use the UPPAAL model checker Bengtsson et al. (1996). With this tool, we can
use timed automata to model, represent and verify the expected behavior of all
elements in our system. Mainly, we can formally verify the different communication
methods between the senders and receivers, i.e. unicast, multicast or broadcast.
Besides, we shall guarantee that our system respects the necessary constraints
during the communication process. For example, a given multicast sender (when
sending a multicast message) expects its message to be received only by a receiver
that belongs to the same group as the (multicast) sender.

5.2.1 Building the Model

Mainly, the construction of our model has three different senders and receivers,
that is, a specific sender and receiver for each kind of communication: unicast,

Title Suppressed Due to Excessive Length 21

Fig. 9 The complete scenario of our case study.

multicast and broadcast. Besides, we include into the network of automata, two
simple models that are used to abstract the connection status, which can be online
or offline; and the communication channel that can be released or not released.
Notice that to start a communication process a given sender should check for two
requirements: i. is the connection offline? and ii. is the communication channel
released?

We use the UPPAAL model checker since we can easily define communica-
tion channels in our model using the so-called synchronization channels. For in-
stance, a channel named sendUnicast! will synchronize with a channel named
sendUnicast?, where the former is the sender while the latter is the receiver.

At the left of Fig. 10, we show the automaton for the Sender-Unicast. As
soon as it is done the verification for connection status and communication chan-
nel, the sender encrypts the message (using the synchronization channel named
encryptUnicast!) and sends the message (using the synchronization channel sendUnicast!).
For verification purposes, we added an acknowledge message by using the channel
unicast received?, which is sent back to the sender by the corresponding receiver
Receiver-Unicast.

Next, in the middle of Fig. 10 we present the automaton for the Sender-Multicast.
The overall workflow is the same as the Sender-Unicast; the only difference is
the use of a multicast type of message instead of a unicast one. So, the au-
tomaton uses the following three synchronization channels: encryptMulticast!,
sendMulticast!, and multicast received?.

22 Vinicius Souza de Jesus et al.

At the right of Fig. 10 it is presented the automaton for the Sender-Broadcast;
this model is quite simple because it does not require encrypting the message.
Thus, the model presents only two synchronization channels: sendBroadcast! and
broadcast received?.

Fig. 10 Unicast, Multicast and Broadcast Senders.

Now, we describe the corresponding receivers. As seen at the left of Fig. 11,
the Receiver-Unicast can receive two kinds of messages: i. an encrypted uni-
cast (using synchronized channel encryptUnicast?); or ii. a broadcast message
(using synchronized channel sendBroadcast?). If the former message is used,
it should be decrypted (using channel encryptUnicast?) and next it is prop-
erly received via channel sendUnicast? to conclude an acknowledge is sent to
Sender-Unicast using channel unicast received!. In case of a broadcast mes-
sage, it is directly received using channel sendBroadcast? and an acknowledge is
sent to the Sender-Broadcast using the channel broadcast received!.

In the middle of Fig. 11 we illustrate the Receiver-Multicast which is quite
similar to the Receiver-Unicast; the only difference is that it should receive a
multicast message instead of a unicast message. Notice that Receiver-Multicast
also can receive a broadcast message using the same channels previously described.

At the right of Fig. 11, we show the Receiver-Broadcast which is responsible
to solely receive broadcast messages via channel sendBroadcast? and acknowledge
the Sender-Broadcast by using the channel broadcast received!.

Fig. 11 Unicast, Multicast and Broadcast Receivers.

Title Suppressed Due to Excessive Length 23

5.2.2 Simulation Scenario

Having built our model as a network of automata, now we explore the UPPAAL
model checker to create a simulation scenario for a given case study.

For that, we define seven instances from the previously automaton (seen in 5.2.1)
as follows:

1. Police Sender as an instance from Sender-Unicast.
2. Support Service Sender as an instance from Sender-Multicast.
3. Bus Sender as an instance from Sender-Broadcast.
4. Support Service Receiver as an instance from Receiver-Unicast.
5. Ambulance Receiver as an instance from Receiver-Multicast.
6. Hospital Receiver as an instance from Receiver-Multicast.
7. Police Receiver as an instance from Receiver-Broadcast.

Fig. 12 Simulation Scenario.

Fig. 12 shows all the seven elements aforementioned plus two models which
respectively represent the connection and communication status. The scenario
simulation enables us to check how all different sorts of senders and receivers can
properly work together and identify whether any change is necessary to be applied
in our model.

Notice that by using Model Checking, this simulation runs all possible instance
for our model, enabling the verification of problems in the model. Besides, the
diagram (see Fig. 13) illustrates that the exchange of messages occurs through the
synchronization channels. Specifically, the image shows the exchange of messages
between the Police Sender and the Support Service Receiver.

5.2.3 Verification of Properties

Now, we specify a set of formal properties using temporal logic. With these prop-
erties, we can formally verify the behavior of our model and check whether or not
the model respects the constraints related to the communication between senders
and receivers. Before presenting the set of properties, we briefly introduce the
temporal logic operators used in UPPAAL verifier.

24 Vinicius Souza de Jesus et al.

Fig. 13 Message exchange diagram.

Brief explanation of UPPAAL operators

Baier and Katoen Baier and Katoen (2008) mention that Timed Computation Tree
Logic (TCTL) is a real-time variant of temporal logic used to express properties
of timed automata. The UPPAAL Model Checker uses a simplified version of
TCTL to specify verification properties. The syntax used in UPPAAL is provided
in Table 5.

Table 5 UPPAAL syntax for TCTL

Operator Meaning
&& And
|| Or

== Equivalence
imply Conditional
not Negation
A Universal quantifier
E Existential quantifier
[] Always
<> Eventually
–> Leads to

We have verified eight properties, and they were successfully verified. Nonethe-
less, the last two properties fail because we intend to show some of the restrictions
that our model should respect.

1. A[] not deadlock

description: this property verifies if the model has no deadlock.
2. A[] (Bus Sender.Broadcast Sent) imply ((Police Receiver.Broadcast Received)

|| (Police Receiver.Waiting) || (Hospital Receiver.Broadcast Received)

|| (Hospital Receiver.Waiting) || (Ambulance Receiver.Broadcast Received)

Title Suppressed Due to Excessive Length 25

|| (Ambulance Receiver.Waiting) || (Support Service Receiver.Broadcast Received)

|| (Support Service Receiver.Waiting))

description: it is always the case that when the Bus Sender sends a broadcast
message, it will be received by any of the Receivers: Police, Hospital, Ambu-
lance or Support Service.

3. A[] (Support Service Sender.Multicast Sent) imply

((Hospital Receiver.Multicast Received) || (Hospital Receiver.Waiting)

|| (Ambulance Receiver.Multicast Received) ||

(Ambulance Receiver.Waiting))

description: it is always the case that when the Support Service sends a mul-
ticast message; it will only be received by the Hospital or Ambulance.

4. A[] (Support Service Sender.Multicast Encrypted) imply

((Hospital Receiver.Multicast Decrypted) ||

(Ambulance Receiver.Multicast Decrypted))

description: it is always the case that when the Support Service sends an
encrypted multicast message; only the Hospital or Ambulance will decrypt.

5. A[] (Police Sender.Unicast Sent) imply

((Support Service Receiver.Unicast Received) ||

(Support Service Receiver.Waiting))

description: it is always the case that when the Police send a unicast message;
it will only be received by the Support Service.

6. A[] (Police Sender.Unicast Encrypted) imply

(Support Service Receiver.Unicast Decrypted)

description: it is always the case that when the Police send an encrypted unicast
message; it will only be decrypted by the Support Service.

7. A[] (Police Sender.Unicast Sent) imply

((Hospital Receiver.Multicast Received) ||

(Ambulance Receiver.Multicast Received))

description: it is always the case that when the Police send an unicast message;
it will only be received by the Hospital or Ambulance.
Remark: this verification fails because a multicast receiver (in this case, the
Hospital or Ambulance) can not receive a message sent by a unicast.

8. A[] (Support Service Sender.Multicast Sent) imply

((Police Receiver.Broadcast Received))

description: it is always the case that when the Support Service sends a mul-
ticast message; it will only be received by the Police.
Remark: this verification fails because a broadcast receiver (in this case, the
Police) can not receive a message sent by a multicast.

5.3 The Prototypes

The vehicles’ prototypes are physically composed of a mini-computer (Raspberry
Pi zero) capable of hosting an operating system and a microcontrolled platform
(Arduino Mega) with a group of sensors and actuators connected to sending per-
ceptions and receiving actions from the Embedded MAS. The prototypes employ
Luminosity sensors (LDR) and ultrasonic HC-SR04 sensors. Furthermore, we em-
ploy the following actuators: a buzzer, two engines, and a group of LEDs to sim-
ulate the vehicles’ headlights and sirens.

26 Vinicius Souza de Jesus et al.

Then, five Embedded MAS were implemented: a bus, a police, an ambulance,
the highway support station, and the hospital. The Embedded MAS from the
hospital and the support station run each one in a different notebook with a mi-
crocontroller Arduino Mega attached to them since they just redirect messages and
coordinates vehicles. In contrast, the bus, the police and the ambulance vehicles
are prototypes using the previously explained sensors and actuators. Figure 14
shows the three built vehicles’ prototypes.

Fig. 14 The vehicles prototype.

5.4 Implementation

Each Embedded MAS has only one Diffuser agent interfacing the hardware with
specific plans for deliberation depending on the embedded vehicle. This Diffuser
agent has initial settings; it first informs the serial port and the microcontroller
using the internal action .port. Then it is necessary to inform if the agent will have
the ability to receive perceptions coming from sensors openned or blocked using
the internal action .percepts. Considering the RF communication, it is necessary to
set an identifier for the agent using the new internal action setRFId. Finally, the
new internal action .getRFMessages is used to indicate whether the agent will be
open or block for communication via RF. Plan 1 is the initial plan in AgentSpeak
created to set all these agents’ configurations. The new internal actions setMyRFId
and getRFMessages allow agents to interface the RF messages and to identify
themselves to other devices. They represent advances and contributions in how
agents can deal with and interface messages from other devices.

Plan 1 The plan that configure the interaction with the Diffuser agent and the
microcontroller

+!start : true <-
.print(”I am a Diffuser agent”);
.port(COM5);
.percepts(open);
.setMyRFId(ROMA);
.getRFMessages(open).

Title Suppressed Due to Excessive Length 27

In the case of the Bus agent, it uses two engines to move around while per-
ceiving the environment (receiving perceptions from the sensors). Based on its
perceptions, the bus agent can check the distance to any obstacle, and if this dis-
tance is less than 20 centimeters, it assumes that it was a collision. When a collision
happens, the agent starts to believe that have suffered an accident and diffuses a
broadcast message requesting help. Then, the Bus agent starts to wait for help to
arrive. The Plan 2 shows the snippet of code of the checkCollision plan. The new
internal action .diffuse allows agents to diffuse messages to other devices using
RF using one of the three available operations (unicast, multicast, and broadcast)
using illocutionary forces tell and achieve. So far, there is no approach allowing
BDI agents to communicate directly with RF sensors. Thus, our approach allows
it by guaranteeing security in unicast and multicast messages.

Plan 2 The object distance identification plan for collision detection

+!checkCollision : proximity(Status) AND Status < 20 <-
.print(”I have suffed an accident!!!”);
.act(stopBus);
.act(accidentAlert);
.print(”Asking for help!!”);
.diffuse(broadcast, tell, help);
+wait;
!waitForHelp.

The Police’s Embedded MAS has a Diffuser agent named Police. It implements
a plan responsible for receiving help messages from RF. Once the agent receives
any message from RF, it automatically decodes the message by extracting a belief
or an intention depending on the message’s illocutionary force. For example, a
telling force indicates that the message carries a belief. Otherwise (achieve) carries
an intention. So, the help message received was using the illocutionary force tell
and automatically decoded as a belief that indicates to the agent that someone
needs help. Consequently, Plan 3 is activated, which is responsible for diffusing
an RF message to the other members of the public security group indicating that
someone needs help.

Plan 3 The Police plan to intercept and forward the help request
+!askForHelp : help <-

.print(”I got an accident message. Requesting support!”);

.diffuse(”SU\\”, tell, someoneNeedHelp);
!helping.

After that, the Police agent starts to wait for another message using tell force
to indicate that help is coming. Since someone informs to Police agent that the
ambulance is coming, the Police agent diffuses a unicast message using the tell
force to the Bus informing them. Plan 4 shows the helping plan that waits for
someone to send a helpComing belief to trigger the plan.

The Support has a Diffuser agent named Support responsible for receiving
help messages from the public safety group and forwarding them to the Hospital

28 Vinicius Souza de Jesus et al.

Plan 4 The Police agent sends to the Bus that the help is coming
+!helping : help AND helpComing <-

.print(”The help is coming!”);

.diffuse(”ROMA”, tell, helpComing).

Embedded MAS (Plan 5). Another contribution of our approach is the possibility
of adopting design time groups. JaCaMo framework allows the programming of
the organizational dimension. Still, it is impossible to organize devices managed by
Embedded MAS in groups mainly because the Moise+ is built to organize agents
from the same MAS in groups, with roles and missions, for example.

Plan 5 The Support plan is to intercept help messages in the public safety group
and forward them to the Hospital

+!informHospital : someoneNeedHelp <-
.print(”I got a help message in the public safety group. Forwarding to the Hospital!”);
.diffuse(”SUHO”, tell, someoneNeedHelp);
!helping.

Then, the Support agent starts to wait for the acknowledgment message from
the Hospital announcing that the Ambulance is going to the place of the accident.
It informs to the Police agent by sending an unicast message saying that the help
is coming. Plan 6 shows the informHelpComing plan, which waits for Hospital
agent to send the ambulanceIsComing belief to trigger the plan.

Plan 6 The Support agent plan sends to the Police agent that the help is coming
+!informHelpComing : ambulanceIsComing <-

.print(”I understood! The Ambulance is coming!”);

.diffuse(”POLI”, tell, helpComing).

The Hospital MAS has a Diffuser agent named Hospital agent. Like the other
agents previously presented, the Hospital agent has a plan activated when receiving
an RF message with the tell force indicating that someone needs help. Upon
receiving the message, the plan is activated, and an RF message with the tell
force is diffused to the available ambulance. In Plan 7, it is possible to see the
source code of the sendAmbulance plan.

Plan 7 The Hospital agent plan that receives a help message from the Support
agent and forward them to the AmbulanceMAS

+!sendAmbulance : someoneNeedHelp <-
.print(”Asking for an ambulance!!!”);
.diffuse(”SUAM”, tell, someoneNeedAmbulance);
!checkAmbulanceIsComing.

Title Suppressed Due to Excessive Length 29

Afterward, the Hospital agent waits for the confirmation message from the
Ambulance agent informing that it is on its way and forwards it with a unicast
message to the Hospital agent. Plan 8 shows the source code of the plan check-
AmbulanceIsComing from the Hospital agent that sends the ambulanceIsComing
belief to the Support agent.

Plan 8 The Hospital agent plan that sends to the Support agent that the Ambu-
lance is coming

+!checkAmbulanceIsComing : ambulanceIsComing <-
.print(”Sending an Ambulance!”);
.diffuse(”SUPP”, tell, ambulanceIsComing);
!wait.

Finaly, the Ambulance has a plan that receives messages from the Hospital
agent informing them that someone needs help. Afterward, the Ambulance agent
sends an acknowledgment message to the Hospital agent informing that it is mov-
ing to the place of the accident. The !iAmGoing plan can be seen in Plan 9.

Plan 9 The Ambulance agent plan that inform to the Hospital agent that it is
going to the accident place

+!iAmGoing : someoneNeedAmbulance <-
.print(”I am going!!!”);
.diffuse(”SUHO”, tell, ambulanceIsComing);
!wait.

In the proof of concept presented, Embedded MAS are applied in different
prototypes — one per each — and they can act autonomously with individual
objectives to be achieved. The road accident scenario was created to test the
middleware and all its types of messages (Unicast, Broadcast, and Multicast). As
expected, the proof of concept was successfully executed. The Broadcast message
sent by the Bus was received by all the Embedded MAS within the range of
the Bus’s radiofrequency emitter. The Multicast message sent by the Police was
received by members of the public safety group within range of the Police. Ulti-
mately, the several Unicast messages exchanged in the other interactions between
the Embedded MAS also worked as expected.

6 Final Considerations

This paper presented a middleware for supporting the development of hardware ap-
plications using Embedded MAS. It allows agents to automatically receive sensors’
perceptions and transfer action commands to controllers. Moreover, it presents a
protocol that allows different Embedded MAS to communicate even when no net-
work infrastructure is available. The middleware provides a secure channel for
unicast and multicast messages to guarantee the security and privacy of the ex-
changed messages. Our approach helps avoid Totally Closed MAS situations by

30 Vinicius Souza de Jesus et al.

providing ad-hoc mechanisms that remove the dependency on centralized architec-
tures. Totally Closed MAS is inevitable in hardware applications since hardware
can be damaged anytime. Therefore, it is essential to give options to the system
designer, considering the agent domain where the approaches are scarce.

Although the architecture specifies a particular microcontroller in the firmware
layer, by adopting Javino as the serial interface, it is possible to maintain the inde-
pendence between the technologies used at high-level systems (MAS) and hardware
layers. Moreover, the microcontroller can be changed without affecting the Embed-
ded MAS programming since the protocol is based on serial message exchanging.
For future works, it is necessary to implement the cryptography algorithms in the
platform’s operating system running as a service because there is a need to man-
age the cryptography keys — supported by a certification authority — outside the
microcontroller once they have limited storage and memory processing.

Declarations

Funding

No funding was received for conducting this study.

Conflicts of interest/Competing interests

All authors certify that they have no affiliations with or involvement in any orga-
nization or entity with any financial or non-financial interest in the subject matter
or materials discussed in this manuscript.

Authors’ contributions

All authors contributed to the study’s conception and design. Vinicius Jesus re-
alized material preparation, and all authors contributed to the analysis and orga-
nization of the results. Vinicius Jesus wrote the first draft of the manuscript, and
all authors commented and contributed to all the following versions. All authors
read and approved the final manuscript.

Ethics approval

All authors have read and abided by the statement of ethical standards for manuscripts.

Consent to participate

All authors consented to participate in this manuscript.

Consent for publication

All authors approved this manuscript for publication.

Title Suppressed Due to Excessive Length 31

References

Al-Otaibi S, Al-Rasheed A, Mansour RF, Yang E, Joshi GP, Cho W (2021)
Hybridization of metaheuristic algorithm for dynamic cluster-based routing
protocol in wireless sensor networksx. IEEE Access 9:83751–83761, DOI
10.1109/ACCESS.2021.3087602

Artikis A, Pitt J (2008) Specifying open agent systems: A survey. In: International
Workshop on Engineering Societies in the Agents World, pp 29–45

Aziz RM, Baluch MF, Patel S, Kumar P (2022) A machine learning based approach
to detect the ethereum fraud transactions with limited attributes. Karbala Int
J Mod Sci 8:139–151

Baier C, Katoen JP (2008) Principles of Model Checking (Representation and
Mind Series). The MIT Press

Barros RS, Heringer VH, Lazarin NM, Pantoja CE, Moraes LM (2014) An agent-
oriented ground vehicle’s automation using Jason framework. In: 6th Interna-
tional Conference on Agents and Artificial Intelligence, pp 261–266

Bellifemine FL, Caire G, Greenwood D (2007) Developing multi-agent systems
with JADE, vol 7. John Wiley & Sons

Bengtsson J, Larsen K, Larsson F, Pettersson P, Yi W (1996) UPPAAL — a tool
suite for automatic verification of real-time systems. In: Alur R, Henzinger TA,
Sontag ED (eds) Hybrid Systems III, no. 1066 in Lecture Notes in Computer Sci-
ence, Springer Berlin Heidelberg, pp 232–243, DOI 10.1007/BFb0020949, URL
http://link.springer.com/chapter/10.1007/BFb0020949

Boissier O, Bordini RH, Hübner JF, Ricci A, Santi A (2013) Multi-agent oriented
programming with JaCaMo. Science of Computer Programming 78(6):747–761

Bordini RH, Hübner JF, Wooldridge M (2007) Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley & Sons Ltd

Brandão FC, Lima MAT, Pantoja CE, Zahn J, Viterbo J (2021) Engineering
approaches for programming agent-based iot objects using the resource man-
agement architecture. Sensors 21(23), DOI 10.3390/s21238110

Bratman ME (1987) Intention, Plans and Practical Reasoning. Cambridge Press
Busetta P, Rönnquist R, Hodgson A, Lucas A (1999) Jack intelligent agents-

components for intelligent agents in java. AgentLink News Letter 2(1):2–5
Castro LFS, Borges AP, Alves GV (2018) Developing a smart parking solution

based on a Holonic Multiagent System using JaCaMo Framework. In: Anais
do XII Workshop-Escola de Sistemas de Agentes, seus Ambientes e apliCações -
WESAAC 2018, Fortaleza, CE, vol XII, pp 226–231, URL http://uece.wesaac.

com/

de Castro LFS, Manoel FCP, de Jesus VS, Pantoja CE, Borges AP, Alves GV
(2022) Integrating Embedded Multiagent Systems with Urban Simulation Tools
and IoT Applications. Revista de Informatica Teorica e Aplicada 29(1):81–90,
DOI 10.22456/2175-2745.110837

Dennis LA, Farwer B (2008) Gwendolen: A BDI language for verifiable agents.
In: Proceedings of the AISB 2008 Symposium on Logic and the Simulation of
Interaction and Reasoning, Society for the Study of Artificial Intelligence and
Simulation of Behaviour, pp 16–23

Elgeziry M, Costa F, Genovesi S (2022) Radio-Frequency Guidance System for
Path-Following Industrial Autonomous Guided Vehicles. In: 2022 16th European
Conference on Antennas and Propagation (EuCAP), pp 1–5

32 Vinicius Souza de Jesus et al.

Endler M, Baptista G, Silva LD, Vasconcelos R, Malcher M, Pantoja V, Pinheiro
V, Viterbo J (2011) ContextNet: context reasoning and sharing middleware for
large-scale pervasive collaboration and social networking. In: Proceedings of the
Workshop on Posters and Demos Track, p 2

Freitas J, Souza L, Sardou P, Lazarin N (2021) Comunicação segura em VANET.
In: Anais da XIX Escola Regional de Redes de Computadores, SBC, Porto
Alegre, RS, Brasil, pp 109–114, DOI 10.5753/errc.2021.18551, URL https://

sol.sbc.org.br/index.php/errc/article/view/18551

Groshev M, Baldoni G, Cominardi L, de la Oliva A, Gazda R (2022) Edge robotics:
are we ready? An experimental evaluation of current vision and future di-
rections. Digital Communications and Networks DOI https://doi.org/10.1016/
j.dcan.2022.04.032, URL https://www.sciencedirect.com/science/article/

pii/S2352864822000888

Guinelli JV, Pantoja CE (2016) A Middleware for Using PIC Microcontrollers
and Jason Framework for Programming Multi-Agent Systems. In: I Workshop
de Pesquisa em Computação dos Campos Gerais (WPCCG)

Guinelli JV, Aguiar OV, Lazarin NM (2018) Análise e comparação de algorit-
mos criptográficos simétricos embarcados na plataforma arduino. In: Anais
Estendidos do XVIII Simpósio Brasileiro de Segurança da Informação e de
Sistemas Computacionais, SBC, Porto Alegre, RS, Brasil, pp 167–176, URL
https://sol.sbc.org.br/index.php/sbseg_estendido/article/view/4153

Hamdani M, Sahli N, Jabeur N, Khezami N (2022) Agent-Based Approach for Con-
nected Vehicles and Smart Road Signs Collaboration. Computing and Informat-
ics 41(1):376–396, URL http://147.213.75.17/ojs/index.php/cai/article/

view/2022_1_376

Heijmeijer AvH, Alves GVAZ (2018) Development of a Middleware between SUMO
simulation tool and JaCaMo framework. ADCAIJ: Advances in Distributed
Computing and Artificial Intelligence Journal 7(2):5–15–15, DOI 10.14201/
ADCAIJ201872515, URL http://revistas.usal.es/index.php/2255-2863/

article/view/ADCAIJ201872515

Hernández MEP, Reiff-Marganiec S (2016) Towards a software framework for the
autonomous internet of things. In: Future Internet of Things and Cloud (Fi-
Cloud), 2016 IEEE 4th International Conference on, pp 220–227

Hindriks KV, De Boer FS, der Hoek WV, Meyer JJC (1999) Agent Programming
in 3APL. Autonomous Agents and Multi-Agent Systems 2(4):357–401, DOI
10.1023/A:1010084620690

Isma A, Kamel A, Abderrahmane S (2022) Hardware in The Loop Simulation for
robot Navigation with RFID. In: 2022 7th International Conference on Image
and Signal Processing and their Applications (ISPA), pp 1–6, DOI 10.1109/
ISPA54004.2022.9786321

Jensen AS (2010) Implementing Lego Agents Using Jason. CoRR abs/1010.0150,
URL http://arxiv.org/abs/1010.0150

Jesus VS, Pantoja CE, Manoel F, Alves GV, Viterbo J, Bezerra E (2021) Bio-
Inspired Protocols for Embodied Multi-Agent Systems. In: ICAART (1), pp
312–320

Junger D, Guinelli JV, Pantoja CE (2016) An Analysis of Javino Middleware
for Robotic Platforms Using Jason and JADE Frameworks. In: 10th Software
Agents, Environments and Applications School

Title Suppressed Due to Excessive Length 33

Khalajzadeh H, Simmons AJ, Abdelrazek M, Grundy J, Hosking J, He Q (2020)
An end-to-end model-based approach to support big data analytics develop-
ment. Journal of Computer Languages 58:100964, DOI https://doi.org/10.1016/
j.cola.2020.100964, URL https://www.sciencedirect.com/science/article/

pii/S2590118420300241

Kumawat P (2022) Radio Frequency Identification Technology Used to Monitor
the Use of Water Point for Grazing Cattle. In: Integrated Emerging Methods of
Artificial Intelligence & Cloud Computing, pp 270–276

Lazarin NM, Pantoja CE (2015) A robotic-agent platform for embedding soft-
ware agents using raspberry pi and arduino boards. In: 9th Software Agents,
Environments and Applications School

Lazarin NM, Pantoja C, de Jesus V (2021) Um Protocolo para Comunicação
entre Sistemas Multi-Agentes Embarcados. 15th Workshop-School on Agents,
Environments, and Applications (WESAAC)

Leitão P, Karnouskos S, Ribeiro L, Lee J, Strasser T, Colombo AW (2016)
Smart Agents in Industrial Cyber–Physical Systems. Proceedings of the IEEE
104(5):1086–1101, DOI 10.1109/JPROC.2016.2521931

Manoel F, Pantoja CE, Samyn L, de Jesus VS (2020) Physical Artifacts for Agents
in a Cyber-Physical System: A Case Study in Oil & Gas Scenario (EEAS). In:
SEKE, pp 55–60

Manoel FCPB, Nunes PdSM, de Jesus VS, Pantoja CE, Viterbo J (2017) Applying
Multi-Agent Systems in Prototyping: Programming Agents For Controlling a
Smart Bathroom Model With Hardware Limitations. Revista Jr de Iniciação
Cient́ıfica em Ciências Exatas e Engenharia (ICCEEg)

Mansour RF, Alsuhibany SA, Abdel-Khalek S, Alharbi R, Vaiyapuri T, Obaid
AJ, Gupta D (2022) Energy aware fault tolerant clustering with routing proto-
col for improved survivability in wireless sensor networks. Computer Networks
212:109049, DOI https://doi.org/10.1016/j.comnet.2022.109049, URL https:

//www.sciencedirect.com/science/article/pii/S1389128622001967

Matarić MJ (2007) The Robotics Primer. Mit Press
Michaloski J, Schlenoff C, Cardoso R, Fisher M, others (2022) Agile Robotic Plan-

ning with Gwendolen. Technical Note (NIST TN), National Institute of Stan-
dards and Technology, Gaithersburg, MD DOI https://doi.org/10.6028/NIST.
TN.2222

Mundhenk P, Hamann A, Heyl A, Ziegenbein D (2022) Reliable Distributed Sys-
tems. In: 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp 287–291, DOI 10.23919/DATE54114.2022.9774734

Ortiz G, Zouai M, Kazar O, de Prado AG, Boubeta-Puig J (2022) Atmo-
sphere: Context and situational-aware collaborative iot architecture for edge-
fog-cloud computing. Computer Standards & Interfaces 79:103550, DOI https:
//doi.org/10.1016/j.csi.2021.103550, URL https://www.sciencedirect.com/

science/article/pii/S0920548921000453

Palanca J, Rincon J, Julian V, Carrascosa C, Terrasa A (2022) Developing IoT
Artifacts in a MAS Platform. Electronics 11(4):655

Pantoja CE, Stabile MF, Lazarin NM, Sichman JS (2016a) ARGO: An Extended
Jason Architecture that Facilitates Embedded Robotic Agents Programming.
In: Matteo B, Müller JP, Ingrid N, Rym ZW (eds) Engineering Multi-Agent
Systems: 4th International Workshop, EMAS 2016, Springer, pp 136–155

34 Vinicius Souza de Jesus et al.

Pantoja CE, Stabile Jr MF, Lazarin NM, Sichman JS (2016b) Argo: A customized
jason architecture for programming embedded robotic agents. Fourth Interna-
tional Workshop on Engineering Multi-Agent Systems (EMAS 2016)

Pantoja CE, Soares HD, Viterbo J, Seghrouchni AEF (2018) An architecture for
the development of ambient intelligence systems managed by embedded agents.
In: The 30th International Conference on Software Engineering & Knowledge
Engineering, San Franscisco, pp 214–215

Pantoja CE, Viterbo J, Seghrouchni AEF (2020) From thing to smart thing: To-
wards an architecture for agent-based ami systems. In: Gordan J, Chen-Burger
YHJ, Mario K, Šperka Roman, J HR, C JL (eds) Agents and Multi-agent Sys-
tems: Technologies and Applications 2019, Springer Singapore, Singapore, pp
57–67

Pham VA, Karmouch A (1998) Mobile software agents: An overview. IEEE Com-
munications magazine 36(7):26–37

Rao AS (1996) AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage. In: Carbonell JG, Siekmann J, Goos G, Hartmanis J, van Leeuwen J,
Van de Velde W, Perram JW (eds) Agents Breaking Away, vol 1038, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp 42–55, DOI 10.1007/BFb0031845,
URL http://link.springer.com/10.1007/BFb0031845, series Title: Lecture
Notes in Computer Science

Sakurada L, Barbosa J, Leitão P, Alves G, Borges AP, Botelho P (2019) Devel-
opment of Agent-Based CPS for Smart Parking Systems. In: IECON 2019 -
45th Annual Conference of the IEEE Industrial Electronics Society, vol 1, pp
2964–2969, DOI 10.1109/IECON.2019.8926653

Savaglio C, Fortino G, Zhou M (2016) Towards interoperable, cognitive and auto-
nomic IoT systems: an agent-based approach. In: Internet of Things (WF-IoT),
2016 IEEE 3rd World Forum on, pp 58–63

Silva GR, Becker LB, Hübner JF (2020) Embedded Architecture Com-
posed of Cognitive Agents and ROS for Programming Intelligent Robots.
IFAC-PapersOnLine 53(2):10000–10005, DOI https://doi.org/10.1016/j.ifacol.
2020.12.2718, URL https://www.sciencedirect.com/science/article/pii/

S2405896320334819

Stabile Jr MF, Sichman JS (2015) Evaluating perception filters in BDI Jason
agents. In: 4ˆth Brazilian Conference on Intelligent Systems (BRACIS)

Stabile Jr MF, Pantoja CE, Sichman JS (2018) Experimental Analysis of the Effect
of Filtering Perceptions in BDI Agents. International Journal of Agent-Oriented
Software Engineering 6(3-4):329–368

Taboun MS, Brennan RW (2017) An embedded multi-agent systems based indus-
trial wireless sensor network. Sensors 17(9):2112

Wooldridge M (2009) An Introduction to MultiAgent Systems. Wiley
Wooldridge MJ (2000) Reasoning about rational agents. MIT press
Zhang X, Tang S, Liu X, Malekian R, Li Z (2019) A novel multi-agent-based col-

laborative virtual manufacturing environment integrated with edge computing
technique. Energies 12(14):2815

View publication stats

https://www.researchgate.net/publication/374091269

