A Robotic-agent Platform For Embedding Software Agents
using Raspberry Pi and Arduino Boards

Nilson Mori Lazarin, Carlos Eduardo Pantoja

ICEFET/RJ — UnED Nova Friburgo — Av. Gov. Roberto da Silveira, 1900 — Nova
Friburgo — RJ — Brasil

pantojal@cefet-rj.br, nlazarin@cefet-rj.br

Abstract. This paper presents a robotic-agent platform to embed software
agents into hardware devices. The platform consists in embed Jason framework
in Raspberry Pi, allowing directly control of its pins, in order to control
hardware devices, and Arduino to control sensors/actuators. So, it is necessary
to prepare both hardware and software, and establish a communication
between them. For this, it was developed the Javino library, which is a
communication protocol for exchange messages between Java and Arduino
using a serial port. It is also presented a three step methodology for supporting
the robotic-agent development. An example using the proposed platform and
methodology is presented. It was chosen a vehicle chassis, as the hardware
robot, that is able to move and deviate from obstacles.

1. Introduction

Intelligent Agents are autonomous entities capable of reasoning and are situated into an
environment which can be physical or virtual [Wooldridge, 2000]. Nowadays, robotics is
one field application for intelligent agents where a robotic agent can have actuators and
sensors to interact with the physical environment. Besides, it is necessary a reasoning
system embed into hardware to provide some intelligence to the robot. Multi-agent
systems (MAS) are software or hardware systems that deals with subjects such as
cooperation, distributed control, communication and fault-tolerance, in real-time
situations. So, to implement a robotic agent microcontrollers are necessary, in order to
control the actuators and sensors; an agent reasoning system using a program language;
and a bridge between the hardware and the software layers. .

There are several microcontrollers like the ATMEGA328, part of Arduino board
[Gertz; Justo, 2012], which is a widespread board for small automation projects; and the
Raspberry Pi board that is a tiny computer with high processing capability [Upton;
Halfacree, 2012]. However, the Arduino processing is very slow for an embed agent
reasoning; and the Raspberry Pi although has a higher processing and memory power, it
does not have an analogic interface, avoiding some sensors to be used. For the
development of reasoning systems, there are several agent-oriented program languages
like Jade [Bellifemine et al., 2013], a Java-based agent-oriented programming language,
and JaCaMo [Boissier et al., 2011], which integrates three technologies for a Multi-Agent
System (MAS) development: the Jason for agent reasoning programming; the CArtAgO
for environments’ artifacts programming; and the Moiset+ for organizational
programming.

Some projects try to integrate and embed a robotic reasoning into hardware such
13

as [Barros et al.,, 2014] that is an automated grounded vehicle, which uses the
ATMEGA328 microcontroller to program the hardware basic functions; a java library for
serial communication between the hardware and the simulated environment programmed
in Java; and Jason framework for the agent programming. In [Calce et al., 2013] it is
proposed an autonomous aquatic robot, which uses Arduino together with BeagleBoard
and can move point-to-point deviating from obstacles.

The objective of this paper is to propose a platform for robotic agents, which uses
the Raspberry Pi and Arduino together to provide the hardware controls, and uses Jason
framework for the agent reasoning. Besides, an improvement of [Barros et al., 2014]
platform is also presented. For the platform construction it will be developed: an action-
ready hardware file for the 4WD Robot Chassis vehicle; The Javino, a library for serial
communication between the Arduino and the Java Environment; a direct link between
Jason and the Raspberry Pi using Pi4J library (available at http://pi4j.com/); and a simple
example using the robotic-agent programmed with Jason controlling the 4WD Robot
Chassis vehicle.

This paper is structured as follows: section 2 presents the methodology for
supporting the robotic agent programming; in section 3, a simple example using the 4WD
Robot Chassis vehicle and Jason framework is presented; section 4 discusses some related
work; section 5 concludes the work; and finally the references used in this paper are
shown.

2. The Robotic-Agent Platform

In this section, it is presented the proposed robotic-agent platform and a methodology to
support the robotic-agent programming. The robotic-agent platform consists in an
embedded software (agent) into a hardware platform (robot). The hardware platform is
composed of the Arduino and Raspberry Pi boards, where Arduino is connected on the
top of Raspberry Pi (using a USB port) to provide analogic hardwares to be used once
Raspberry does not provide analogic pins. Therefore, it is possible to connect actuators
devices using both boards, but is only allowed to use sensors connected with Arduino.
One of the advantages of using Raspberry Pi is that it is possible to connect up to 127
Arduino boards (the USB device limit) in a single board.

The software agent is programmed using Jason framework and it is embedded into
Raspberry because of its processing power and storage capacity. The platform uses the
Javino to provide bidirectional serial communication between the hardware (Arduino)
and the software agent; and the PI4J library for a direct control over Raspberry’s digital
pins. So, the agent is able to switch the Raspberry’s pins values without any
microcontroller intervention (the Raspberry uses the Python programming language to
control digital pins), and senses the real environment or act upon it using Javino which
transfers data perceived or sends a command for some action to be executed in real world.
The platform is initialized once Raspberry starts. The proposed platform can be seen in
figure 1.

The Raspberry can be used to manage both actuators and sensors, however this is
not the main objective of the board since the GPIO are delicate and do not accept analogic
inputs on its project. The Arduino’s pins are more resistant then GPIO, besides it has
available analogic pins. Furthermore, it is possible to communicate with Raspberry from
an USB port. Therefore, in this platform, the Arduino manages sensors and actuators,

14

while Raspberry hosts the reasoning and control only some actuators with GPIO.

Figure 1. The proposed robotic-agent platform.

Sensors perceive

ARDUINO
Actuators
SIMULATED

ENVIRONMENT ikl
RASPBERRY |

act

Actuators

REAL ENVIRONMENT

2.1. The Communication Protocol Using Javino

Here it is introduced the Javino which is a double-side library protocol for exchanging
messages between an Arduino and Java program using a serial port. When a software
agent needs to act in the environment, it is necessary to transmit its command to the
microcontroller (Arduino ATMEGA328) where the actuators are connected. Since the
agent cannot perform an action directly to the Arduino, because it is not possible to embed
an agent software into a limited microcontroller (Arduino storage is due to 32Kb), it is
necessary to provide a bridge between agent’s external actions and microcontroller’s
functions. In the same way, when the agent needs to sense the environments, the data
perceived from sensors has to be sent to the agent.

There are some libraries that use serial port to deal with one-side messages such
as RxTx and IO library (both for Java). However, these libraries just provide message
treatment for one platform side (environment) leaving the other side to the programmer.
The Javino aims to fill this gap because it offers a double-side communication library
based on the platform functioning: the Javino for Arduino and Javino for Java. They work
together to provide a higher level of correctness in message exchange.

4 hex 2hex up to 256 bytes
{_A_\ (_l_\ A
[)
preamble | field size message
fffe od Hello Javino!

Figure 2. The message format.

For this, every message is composed of a preamble, a field size and the message
content (figure 2). The preamble is a field composed of four hexadecimal characters that
are used to identify the beginning of a message sent by an agent. The field size is
composed of two hexadecimal characters that are used to calculate the message extension.

15

Finally, the last field is the message content up to 256 bytes. The preamble and the field
size are used together to avoid errors in case of loss of information during the message
transmission. For the sake of practice, Javino automatically mounts the message.

When a message is sent (either from agent to Arduino or vice versa), the Javino
library starts to listen the serial port for arriving char-to-char messages. If there is any
information arriving, the Javino stores this character analysing if it is part of the expected
preamble. So, this process is repeated until the message has been completely received.
Once the preamble is not confirmed, the Javino discards all information received until it
finds a valid preamble. Otherwise, the Javino verifies the field size value to identify the
message length. This process avoids error insertions and defines where a message starts
and ends. Javino still has a pre-defined time-out to every character received, ending the
actual process (if the time-out has been reached) and starts a new message listening.

After all done, the string message is mounted and returned. For the Arduino-side
Javino, the message received will activate a hardware function or ask for data from
sensors while for the environment-side Javino, the received message can be transformed
into beliefs and sent to the software agent.

2.2. The Platform Methodology

In this section it is explained the methodology to support the robotic-agent programming.
The methodology aims to guide the programmer between phases that will need some
programming intervention, since the platform uses Arduino, Raspberry Pi and Jason. The
methodology is composed by three steps that can be seen in figure 3.

The STEP 1 phase is composed by the selection of the hardwares (robot, sensors
and actuators) to be connected in the Raspberry and/or Arduino boards. The selection
consists in choose one pre-defined file for Arduino robots available with the
methodology. Until now, there are two pre-defined robot chassis available: the Rover 5,
a tank style vehicle; and the 4WD, a four-wheel drive vehicle. These pre-defined files
guarantee all basic movements (forward, reward, left, right, turn, etc.) for those robot
chassis. In the same way, the sensors and actuators selection consist in import a
communication file where functions for connecting some devices (like GPS devices and
compass) are defined. The methodology tries to provide a plug-and-play style, where the
programmer do not need to interfere too much into the programming.

However, if the programmer desires to develop his own robot (or improve an
existing one), it has to be programmed, in the Arduino board, all functions for the
connected sensors and the actions that will be performed when the software agent
executes an external action (both using the Javino library).

16

|

STEP 2: Environment | STEP 3: Agent
|
|

Selection Preparation Programming

| |
| |
ARDUINO I ENVIRONMENT [
ROVER 5 ! |
| |
I PR—— [
4WD ! | PMY }
I v I
,,,,,,,,,,,, [{ 5 \
Other \ ! { JAVINO | - ——— =
Vehicle | :"'*": [|] | requestData;
""""""" p;r-}"'- Freee. | ,.4----4I | forward: |
[= [left; !
Sensors and I External Actions } right
Actuators | and sendBelief | backward;
Communication | Action | turn;: E
! = =
STEP 1: Hardware |
|
|

Figure 3. The robotic-agent programming methodology.

In STEP 2 it is necessary to prepare the agent’s simulated environment. As the
platform uses the Jason framework, it is used the basic Java environment where the
agent’s external actions (the actions that an agent wants to execute in real environment
through the hardware layer) are programmed. So, when an agent wants to activate the
actuators to move left for example, it is necessary to program the message (it is used “left”
for the robot pre-defined files) that will be sent to the hardware. If the agent wants to get
data from sensors, it is necessary to request it using an external action, where the hardware
will return the data via Javino.

In order to have the communication between the software agent and the hardware
it is necessary to import two libraries into Jason’s simulated environment: i) The Javino
library for Java which provides communication between Arduino and the environment,
and; ii) The Pi4J library which provides functions for directly controlling the Raspberry
pins (without any intervention in the microcontroller programming).

At last, the STEP 3 is the agent programming using AgentSpeak. In this phase it
is just necessary to program normal agents using Jason framework. The agent’s plan
should have external actions to perform actions into the simulated environment. The
methodology do not provide how to connect electronic devices for neither the robots
chassis nor sensors and actuators. For more information about how to use the devices and
pre-defined files cited in this paper look for http://sourceforge.net/projects/javino/.

3. Controling a 4WD vehicle with Jason

In this section it is presented a simple example using both proposed platform and
methodology to implement a vehicle robotic-agent. The vehicle is able to move forward
until it finds an obstacle when it will change its directions turning to right, left or reward,
depending if there is another obstacle or not. For this, it was chosen the 4WD vehicle and
an ultrasonic distance sensor. The 4WD chassis is equipped with four 7.2V motors
encoders. By means of exemplification and to fully follow methodology, was chosen to
connect the vehicle and the sensor at Arduino board using the Raspberry only for embed
the software agent.

17

Figure 4. The vehicle robotic-agent chassis.

Following the methodology, in STEP 1 was selected the pre-defined file for the
4WD vehicle and the communication file for the ultrasonic distance sensor (both available

at http://sourceforge.net/projects/javino/.). The pre-defined files are ready to use and have
the Javino library setted. The pre-defined 4WD file provides movements functions (move,

reverse, left, and right).

After that, the environment has to be prepared for the agent’s external actions.

First of all, it is mandatory to import Javino library into Jason’s environment. The Pi4J

library is not necessary in this example because it was chosen to connect the hardwares

in Arduino board. All movements functions present in 4WD file must be programmed (if

the programmer desires to use all possible movements). It was chosen to use the request-
send method to update the agent’s belief base: the agent requests to update its beliefs
using an external action. Finally, the agent is programmed using Jason and AgentSpeak.

The environment programming and the agent code can be seen in figure 5.

if (action.
logger.
javino.

}

if (action.
logger.
javino.

getFunctor() .équalsi"f;‘ont" IR
info(agName + ": sent front to Arduino.™);
sendmsg(“front”);

getFunctor().equals("refresh™)) {
info(agName + ": refreshing sensors.");
sendmsg(“refresh™);

if (javino.availablemsg()) {

addPercept(Literal.parseliteral (javino.getmsg()));

}
b

if (action.
javino.
logger.

Now, the Raspberry Pi has to be configured to start with the embedded software
(the project’s jar file). It was realized two basic experiments: using a room without
obstacles; and a room with three obstacles. The examples could show that the platform

getFunctor().equals({"turnLeft")) {
sendmsg("turnLeft");
info(agName + ": sent TurnLeft to Arduino.™);

'start.

+!start: connected <-
'move.

-!start: not connected <-

.print("Waiting for hardware response...").
+!move : not obstacle «<-

.print("Go ahead.™);

front;

I'refreshSensor;

'move.
+!move : obstacle <-

.print("Obstacle ahead... turning left!™);

turnLeft;

'move.

+!refreshSensor <-
refresh.

Figure 5. The environment and agent implementation.

18

works as expected, providing a reasoning for a hardware trying to reduce the programmer
interventions. Some problems could be identified such as the agent executing time to send
messages while it was still waiting data from sensors. The serial buffer could loss the
information if the agent sends another serial command to the hardware. For now, this
problem can be solved by both programming: wait action in Jason or Thread.Sleep in
Java.

4. Related works

In this section it is discussed the proposed platform and methodology in comparison with
the platform for grounded-vehicles [Barros et al., 2014] and the aquatic robotic using and
BeagleBoard [Calce et al., 2013]. The platform for grounded-vehicles proposes an
integration between Jason framework and the Arduino that uses RxTx library for
communication between Arduino board and Jason’s environment. Although the platform
can operate a ground-vehicle and be adaptable for any kind of vehicles, it uses transmitters
and receivers for each side (Jason and Arduino) that could cause data loss, interferences
and depends on an external processing station (e.g. computer). The proposed platform
truly embed Jason into a hardware without wusing external devices or
transmitters/receivers for communication since it uses Raspberry, which provides an
operational system that can be directly connected to an Arduino board.

The methodology for the grounded-vehicle platform consists in four programming
steps: the hardware selection; the firmware programming (for the sensors/actuator actions
and transmitters/receivers actions); the environment preparation (using RxTx and Jason’s
external actions); and the agent programming. The proposed methodology reduces the
programmer interference into the code, because it offers pre-defined files for some
hardwares, that can be changed based on the hardware selection; it uses Javino which
provides a ready-to-use communication protocol between Java and Arduino; and can use
the Pi4J library, that directly controls the Raspberry digital pins (decreasing the
methodology in one step). Basically, the programmer only has to worry with the agent
and the simulated environment.

In [Calce et al., 2013], an aquatic robot (boat) using Arduino BeagleBoard is
presented, where a robot can move from one point to another deviating from obstacles.
The robot platform consists in connecting via USB port Arduino and BeagleBoard, which
holds a standard robot middleware called ROS (for movements). The proposed robotic-
platform uses Raspberry Pi, a lower price board with similar specifications. It also
provides pre-defined files for Arduino (such as ROS), which communicates with a
message protocol library that can be used to exchange messages between hardware and
software. The aquatic robot does not use agent-reasoning, being only an action-reaction
robot while the proposed methodology uses Jason framework.

5. Conclusion

This paper presented a robotic-agent platform that uses Arduino and Raspberry to
automate hardware functions and Jason to provide intelligent reasoning. Besides, it also
presented the Javino library which is a communication protocol to exchange messages
between Java and Arduino using serial port. A simple example using 4WD chassis was
implemented to evaluate both platform and methodology.

For future works it will be proposed an architecture and several internal actions
19

for Jason, in order to provide to agents directly control vehicles movements. It will reduce
the programmer interference into code, since he will not need to program the simulated
environment anymore (for vehicles movements). It is also possible to directly update the
agent’s belief base without any interference into environment. The platform will be
extended to guarantee communication between two or more robotic-agents. Furthermore,
more pre-defined files for other kind of vehicles and sensors/actuators will be developed
too.

References

Barros R. S., Heringer V. H., Pantoja C. E., Lazarin N. M., and Moraes L. M. (2014) “An
Agent-oriented Ground Vehicles Automation Using Jason Framework™ In:
Proceedings of 6th International Conference on Agents and Artificial Intelligence:
volume 1, ICAART'14, Angers, France.

Bellifemine, F., Caire, G., and Greenwood, D. (2007). "Developing multi-agent systems
with JADE". Wiley series in agent technology.

Boissier, O., Bordini, R. H., Hubner, J. F., Ricci, A. e Santi, A. (2011) “Multi-agent
oriented programming with jacamo” Science of Computer Programming.

Bordini, R. H., Hubner, J. F. ¢ Wooldridge, W. (2007) “Programming Multi-Agent
Systems in AgentSpeak using Jason” Jonh Wiley and Sons, London.

Calce A., Forooshani P. M., Speers A., Watters K. ,Young T., and and Jenkin M. (2013)
“Autonomous Aquatic Agents” In: Proceedings of 5th International Conference on
Agents and Artificial Intelligence: volume 1, ICAART'13, Barcelona.

Gertz E. and Justo P. D. (2012). Environmental monitoring with Arduino. EUA: Maker
Press, 2012.

Upton, E. and Halfacree, G. (2012). "Raspberry pi user guide". United Kingdom: John
Wiley & Sons Ltd,.

Wooldridge, M. (2000). "Reasoning about rational agents". Intelligent robotics and
autonomous agents, MIT Press.

20

