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Abstract. Although Multi-Agent Systems (MAS) can handle various
problems in heterogeneous environments, unknown problems may arise
at runtime due to their inherent heterogeneity when dealing with cyber-
physical systems. Therefore, designers of intelligent cyber-physical sys-
tems must adopt approaches that enable adaptability and fault toler-
ance at runtime. This work proposes techniques for dynamically adding,
removing, and swapping resources (sensors or actuators) in Embedded
MAS at runtime. These approaches utilize the BDI model and a cus-
tomized agent architecture capable of perceiving the availability of mi-
crocontrollers integrated into the system through serial communication.
A case study was conducted to analyze five scenarios that an embedded
MAS can deal with, starting from where there are no existing physical
resources and new resources must be added at runtime and a scenario
where failures, replacement, and the need for upgrade scenarios occur.
Our approach was evaluated and tested in three different BDI frame-
works, demonstrating that swapping resources at runtime is a promis-
sory feature to guarantee the adaptability of intelligent cyber-physical
systems.

Keywords: multi-agent systems - embedded multi-agent systems - em-
bedded systems.

1 Introduction

Distributed Artificial Intelligence is a field of Science dedicated to studying,
constructing, and applying autonomous systems capable of achieving objectives
or performing some set of tasks [28]. A Multi-Agent System (MAS) comprises
software agents that can perceive or act autonomously in a real or a virtual
environment where they are situated; besides, these agents are cognitive, au-
tonomous, proactive, and have social ability since they can interact with other
agents from the MAS to compete or collaborate toward their individual or sys-
tem goals [29]. Agents can assume cognitive abilities by adopting a cognitive
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model. One of the most adopted cognitive models is the Belief-Desire-Intention
model (BDI) [6]. This model is based on understanding the practical human rea-
soning that decides, moment by moment, what action to take to achieve goals
based on plans that beliefs, desires, and intentions can activate [30].

These MAS have been applied in several domains due to their advantages
that allow an increase in speed and efficiency due to their parallel nature and
asynchronous operation, in addition to allowing scalability and flexibility [2].
These systems differ from conventional systems by presenting additional charac-
teristics such as independence since its operation or existence does not depend
on other agents; proactivity, as it acts on the environment, on its initiative;
collaboration, as it communicates with other agents to organize their actions;
cognition, as it draws up action plans to achieve a goal; and adaptability because
in case of failure, it looks for executing alternative plans.

An Embedded MAS is a system running on top of devices, where cognitive
agents are physically connected to resources to perceive and act in the real world
and communicability with other devices [5]. By definition, these systems can
deal with different problems in heterogeneous environments. However, unknown
problems, and consequently, those not foreseen at design time, may be presented
to the MAS at runtime, and there may be no agents in the system capable of
dealing with the presented problem. Thus, due to the natural heterogeneity of
real environments and the adaptability of agents, the designer must adopt an
approach that makes the Embedded MAS adaptable and fault-tolerant at run-
time, allowing the maintenance and replacement of resources that are damaged,
or even the addition of new resources, to deal with new problems. One of them is
to employ an Open MAS that allows mobility. Then, an agent with the necessary
skills could be invited to join the society [8]. Besides, a MAS could also dispatch
a duplicate capable of dealing with the problem [24].

The resources of an Embedded MAS are defined only at design time. The
designer must define them before assembling the device, and, once defined, it is
impossible to change them at runtime. For this, the Embedded MAS must be
stopped, and the MAS reprogrammed. The swapping of resources — addition
or removal — is an interesting feature in the development of Embedded MAS
because it adds adaptability at runtime for agents. The system does not need
to be turned off, and agents could reason about the availability of resources. In
this way, an autonomous agent can be adaptable, continuing to perform actions
to achieve its goals in case of hardware failure, for example. Considering the
extant BDI agent-oriented languages and frameworks [3][4][9][22], they do not
initially provide access to physical resources. Argo is a customized architecture
that allows agents to interface with hardware resources but is also not prepared
to deal with the swapping of resources [21].

This work introduces a novel functionality that enables the dynamic swapping
of physical resources within an Embedded MAS. Consequently, an embedded
system with existing physical resources can now have new resources attached or
removed, with the agents automatically detecting these additions or absences.
As the Embedded MAS uses the serial port to govern the microcontroller, the
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agent becomes aware of its availability each time it attempts to access it during
perception or action. The primary objective is to enhance the MAS’s adaptive
capacity and facilitate the development process of embedded systems. To achieve
this, we extend Argo agents by incorporating a modified version of Javino [16], a
serial interface responsible for message exchange between the microcontroller and
agents. Javino can now identify added or removed resources, effectively notifying
the agent about these changes.

Adding resources at runtime could be achieved by adopting an Open MAS
and agent mobility allowing agents to enter and leave its system anytime [1]. In
Jason, this is possible by adopting bio-inspired protocols for moving agents from
one Embedded MAS to another [26]. Then, one resource could be added, and
one agent with proper plans could be sent to control this resource. However, it
is important to note that even with agent mobility, the agents cannot currently
identify when a resource has been removed.

In this extended version of the paper [14], we also provide packages of Argo
to work along with JaCaMo and Jason using command line interface (CLI).
JaCaMo [3] integrates three MAS dimensions — organizational, environmen-
tal, and agency — combining Moise[12], CArtAgO[23], and Jason framework[4].
JaCaMo-CLI and Jason-CLI allows the creation of MAS using terminal com-
mands without graphical interfaces. Besides, we assembled a new study case
using a single-board computer hosting the Embedded MAS and some microcon-
trollers managing sensors and actuators considering Jason Embedded [19] using
the ChonlIDE [13], JaCaMo-CLI, and Jason-CLI. The Embedded MAS is de-
veloped using Jason interpreter, the extended Argo agents and packages, and
Javino.

The contributions of this work are a novel feature to swap resources in Em-
bedded MAS using BDI agents at runtime, an extended version of Argo agents
and Javino for Jason framework, and packages for working with JaCaMo. This
paper is structured as follows: Section 2 discusses some related work; In Section
3, we present the swap approach; The swap feature is tested in Section 4, and
finally, we present the Conclusions and the References.

2 RELATED WORK

From a practical point of view, the swap of physical resources at runtime could
facilitate the process of maintaining and expanding an Embedded MAS since it
does need to be stopped to add a new resource or to remove an existing one.
If the domain is critical, undesirable stops must be avoided at the most, and
turning it off is not an option.

The Argo [21] architecture is a BDI agent capable of capturing and filtering
the perceptions [27] coming from the sensors that sense the environment. It is
also capable of sending commands to activate and deactivate actuators. Argo
processes the perceptions directly as beliefs, and it can reduce the amount of
perceptions by activating runtime filters, so the agent can focus only on those
necessary to achieve its goals. Argo uses Javino [16] as the serial interface for
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accessing the device’s resources. Considering the various layers and steps of the
development process of an embedded system, Argo facilitates MAS programming
because it abstracts the technological issues of interfacing hardware. The agent
just needs to know what serial port it is handling. Argo and Javino do help in
the development of MAS, but they do not offer a mechanism to identify if the
port the agent is handling is available or not. In fact, several solutions allow to
define and employ the devices’ resources at design-time [18][25][11]. In none of
these solutions, the designer adds or removes the resources without stopping the
system.

The Resource Management Architecture (RMA) [20] enables the addition of
new devices at the edge of an IoT system at runtime. A device using the RMA can
use an Embedded MAS to control microcontrollers, and all information gathered
could be forwarded to be published using the Sensor as a Service model. In
addition, Physical Artifacts using CArtAgO [23] can be used as a resource with
or without a dedicated MAS [17]. These devices can be added or removed from
the RMA at any time. However, although the dynamism of this IoT architecture,
devices can only be added to the network if it is online. Furthermore, swapping
the devices’ resources is only possible during design time, and it is still impossible
to add or remove any resource without stopping the MAS. Besides, it depends
on an available IoT network for communicating.

The bio-inspired protocols [26] for moving agents allow an Embedded MAS
of a device to take control of another device by moving all its agents and their
respective mental states. However, the target device must be identical to the
source device for effective hardware control. So, it is still possible to add addi-
tional resources to the target device at runtime and move agents with proper
plans to handle these new resources. As an Embedded MAS uses a physical ar-
chitecture with boards running an OS with serial interfacing between agents and
microcontrollers, it is possible to add resources at runtime. Then, once agents
can communicate and move from one MAS to another using bio-inspired proto-
cols, it is possible to program the agent at design time and move it at runtime,
adopting a protocol that does not eliminate the target MAS. In this way, know-
ing the serial port where the new device is connected and sending the agent
prepared to handle it, it is possible to add a resource accessible by BDI agents
at runtime in an Embedded MAS. However, removing agents is not yet possible,
and the solution depends on the available communication infrastructure.

In our approach, the serial interface informs the agent about the port avail-
ability it is trying to access. Then, whenever the agent has a new resource con-
nected to the Embedded MAS, it perceives which port it is connected to. If the
resource is removed, the next time the agent tries to gather the perceptions or
act, it updates its mental state with the unavailability of the resource. In this
new version of Argo, the agent receives this information each time (in the be-
ginning) its reasoning cycle is performed. It is also updated at the end of the
cycle if it tries to perform an action using any resource. With this perception,
the agent can deliberate whether or not to pursue an intention that might be
unreachable.
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3 METHODOLOGY

When acting in a dynamic physical environment, agents must be prepared to
reason regarding the availability of information and resources. Agents can use
their own physical resources to gather information and act upon this environ-
ment. Still, as with any physical component, these resources could be damaged,
unavailable, or changed by improved technologies. Then, agents must follow the
adaptive ability to be aware of which resources are available when it needs to
use them. Besides, embedded agents must also be fault tolerant and decide what
to do when a resource is not available or damaged. So, swapping devices at
runtime is a desired feature for any Embedded MAS. In this section, we review
the architecture for constructing a cognitive device using Embedded MAS and
the new feature for swapping physical resources using the Jason framework and
Argo agents.

It is necessary to observe a four-fold architecture to construct a device man-
aged by an Embedded MAS:

1. Hardware. It comprises all available resources of a device. They are physi-
cally connected to a microcontroller. These sensors and actuators are respon-
sible for gathering the environment’s perceptions and acting upon them. All
microcontrollers employed in the device must also be connected in serial
ports of a single-board computer (or any micro-processed platform).

2. Firmware. It represents the microcontroller programming where the per-
ceptions are mounted and sent to the Embedded MAS based on the agent-
programming language or framework adopted. The commands that activate
the actuators are also programmed in response to serial messages.

3. Serial Communication. All messages exchanged between agents and re-
sources use serial communication. This layer uses a serial interface to manage
the message flow between agents and different microcontrollers. Agents need
to know which serial port the resources are connected to.

4. Reasoning. It includes the Embedded MAS programming running on the
single-board computer. Agents are programmed to automatically understand
the perceptions of sensors as beliefs; afterward, they can deliberate and send
commands back to activate actuators.

This architecture makes it possible to exchange resources at runtime on an
already-designed device since all layers are low coupled. New sensors or actuators
can be added to the system anytime since they are connected to a microcon-
troller. After this, they can be connected to a serial port. So, for any agent to
interface these new resources, it would only need to know which port to access
at runtime. However, it could not know how to manipulate it and would need
to learn these skills some other way.

In this paper, we present an approach that allows Argo agents to test the
availability of serial ports. Then it can deliberate whether or not to continue
pursuing the goals associated with an unavailable resource. Besides, when it
becomes available again or a new resource is inserted at runtime, the agent is
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aware of the availability of the serial port. We define the swapping of resources
as the ability to add, remove, or exchange physical components to the device
at runtime. This novel ability of BDI agents guarantees that agents could be
adaptive and fault-tolerant regarding hardware resources. The Embedded MAS
— and, consequently, the device — does not need to be turned off for predictive,
preventive, or corrective maintenance. This characteristic could reduce risks and
increase profits in some domains, such as industrial applications.

Any Argo agent interfaces the hardware resources using Javino by accessing
which port the microcontroller is connected to the single-board computer. So,
when connecting a new microcontroller with new resources in a device managed
by an Embedded MAS (or when removing), Javino verifies if the port is accessible
or not and informs to the Argo agent who is trying to access it by sending a belief
with the port information and if it is on, off, or timeout. Otherwise, when the
resource is removed or fails, it can deliberate to drop its intentions related to the
disconnected resources, for example. Figure 1 shows the four-fold architecture
and the belief representing the port availability (i.e., port(name, status)).

REASONING (

deliberated
action

percepts

port(name,
on | off |
timeout)

SERIAL
mestapes], paapt |
FIRMWARE

low-level raw data
commands

'HARDWARE |

REAL WORLD |

JAVINO
JAVINO

EXISTING
EXISTING

Fig. 1. The four-fold architecture for programming Embedded MAS on top of hardware
devices [14].

When connecting a new resource in the system, three possible approaches
can occur: an agent needs to learn how to deal with this new resource, a new
agent can be employed to handle it, or any agent can already know how to use
it. For the first case, the designer must program an external MAS and use an
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IoT network [10] infrastructure to transfer the knowledge (plans) or the agent.
At first, the designer can send the plans directly to a Communicator agent that
redirects the plans to the Argo agent that controls the serial port. For this, Jason
Embedded is employed. At last, a new Argo agent with the new desired abilities
is transferred to the Embedded MAS using the bio-inspired Protocols [26]. Once
the agent arrives at the destination, it can control the new resources and inter-
act with the existing agents in that system. If no communicability or mobility
is available, the designer can program the agent’s behavior at design time to
deal with possible new resources connected at runtime. However, adding totally
unknown resources is still an open issue in the domain.

The practical intention is to create cognitive devices where agents are not
dependent on resource availability. Agents can be stuck in pursuing goals that
could be momentarily or permanently unreachable since the resources are not
available anymore. In the worst case, the agent could deliberate based on wrong
information, or the whole Embedded MAS could crash with malformed beliefs.

In order to ensure runtime adaptability in Embedded MAS, particularly for
adding new resources or updating existing ones, it is essential to design the
system with a communicator agent connected to an IoT server when using Jason
Embedded. In this way, the system can receive new plans for an Argo agent
that already manipulates a resource or can receive a new Argo agent capable
of manipulating the resource to be added. When using the Argo packages for
JaCaMo or Jason, some agent that knows how to deal with the new resource must
exist at design time. Then, in Argo packages, the agent should exist when starting
the system since it is impossible to move or create it at runtime. Alternatively,
adding new agents at runtime direct from the terminal is possible using Jason-
CLI. Figure 2 presents the proposed approach for building an Embedded MAS
capable of adding, removing, or changing resources at runtime.

Using Jason Embedded Using Jason Using JaCaMo

External MAS Embedded MAS Embedded MAS Embedded MAS

\ S — ContextNet Server C — Communicator Agent Ai—Argo Agent Ri — Resource Ei — Sensor or Actuator \

Fig. 2. The swapping methodology for Embedded MAS.

3.1 The Swap Feature in Argo Agents

Argo agents is a customized architecture from Jason’s framework for interfacing
hardware resources. All the information gathered from sensors is interpreted
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as perceptions by Argo. Then, when programming Argo agents at design time,
the designer needs to inform the serial port that the agent interfaces to the
perceptions flow directly to the agent’s belief base. It is important to remark
that this process still occurs when resources fail or become unavailable. As said
before, the agent is unaware of the port availability, which could lead to undesired
behaviors.

Argo has the ability to change the serial port it is accessing and block the flow
of perceptions at any time. If Argo is aware that a serial port is not answering
anymore, it could try to reach another port or simply block the perceptions from
that port. Then, when swapping resources, Argo agents need to access the status
of the port which is trying to reach. For this, we defined a belief port(Name,
Status), where the name identifies the serial port name, and the status indicates
if it is on, off or timeout. For example, when removing a resource located at serial
port name ttyA CMO, the agent receives directly in its belief base port(ttyA CMO,

off ).

ARGO port(name, status)

JASON

beliefs Belief beliefs
Base

port(name,

L BUF BRF  errars
event:

Events

internal
events

external
events

Beliefs plans
0 add Plan

and  |Library
delete
messages . intention
checkMail

actions.
act —

action|

filter

perceive

percepts p—;

messages.
sendMsg

update
Intention

Fig. 3. The Argo’s extended reasoning cycle [14].

Every BDI agent from Jason performs a well-defined reasoning cycle where
the agent executes an expected behavior in each step. Argo has an extended
reasoning cycle that modifies two distinct steps at the beginning of the cycle,
when the agents perceive the real environment to gather perceptions, and at
the end, when it acts, sending commands to actuators. The remaining steps are
inspired by the Practical Reasoning System (PRS) [7]. It defines which events will
trigger plans and intentions to define the sequence of actions to be performed.
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In the perceive step of an Argo’s reasoning cycle, the Javino is the serial
interface responsible for gathering the perceptions from sensors and forwarding
them to the Belief Update Function (BUF). Javino requests the perceptions by
accessing the microcontroller whenever the agent performs a cycle. In this step,
we modified Javino to inform whether or not the serial port the agent is trying
to connect to is available.

In the same way, at the end of the cycle, the agent performs actions that can
reflect in commands to be sent to actuators. In this step, Javino is also responsi-
ble for sending serial commands to the microcontroller. In this case, we modified
the internal action named act to update the agent’s belief base by adding the
port(Port, off) belief in case the serial port is unavailable anymore. Javino tries
to access the port, and in case of failure, it returns the aforementioned belief.
The modified reasoning cycle of Argo agents is presented in Figure 3.

4 CASE STUDY

This case study involves the analysis of five possible scenarios at runtime con-
sidering an Embedded MAS that avoids obstacles. We considered the following
scenarios (Figure 4):

— Scenario 1: The first scenario presents an Embedded MAS controlling a
prototype with no sensor or actuator. In this scenario, there are no goals to
achieve by agents, but the MAS must be ready if new resources are added.

— Scenario 2: In the second scenario, two new resources (a sensor and an
actuator) will be added to the prototype. In this case, the Embedded MAS
must identify the type of resource received and find an agent to control it.

— Scenario 3: In the third scenario, a case of fault tolerance is tested. The
previously added sensor will stop reporting environmental perceptions to the
Embedded MAS. In this case, the agent must stop acting to avoid collisions
until the resource is functional again.

— Scenario 4: The faulty resource from the previous scenario will be replaced
in the fourth scenario. However, the new resource will not maintain compat-
ibility with the removed one. In this case, the Embedded MAS must be able
to adapt, and agents still deliberate without any change.

— Scenario 5: Finally, the fifth scenario, the actuator will be replaced by
another type of actuator compatible with the previous one. In this scenario,
the Embedded MAS must recognize the resource exchange and fulfill its
mission.

To fulfill the proposed scenarios, we implemented an Embedded MAS, which
runs and controls the following physical devices: a single-board computer to host
the reasoning layer and some microcontrollers to host the firmware layer. USB
ports provide serial communication from the reasoning layer to the firmware
layer. Finally, in the hardware layer, the actuators accountable for moving the
robot were a biped platform and a wheeled robotic chassis; moreover, the sensors
accountable for environmental perceptions used were an infrared sensor and an
ultrasonic distance sensor.
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Fig. 4. The scenarios of proposed case study.

4.1 Reasoning Implementation

A MAS was idealized to deal with the unpredictability of physical resources and
meet the proposed scenarios, basically containing a coordinator agent for the
embedded system and operator agents for dealing with physical resources when
they exist. The behavior of these agents is standard, regardless of the frame-
work used, be it Jason Embedded, Jason-CLI, or JaCaMo. Thus, this subsection
presents the plans of these agents before presenting each scenario.

Coordinator Agent The coordinator agent initially aims to test the system’s
serial ports. For this, three achievement goals were implemented, one for each
serial port that triggers a plan to validate serial communication connectivity
every five seconds and a contingency plan for when the ports are found, and he
can achieve the objective of walking around.

The plan to validate connectivity tries to use the serial port and get the ex-
ogenous environment’s perceptions. Two plans were implemented to meet these
perceptions about the serial port’s status. One to abort if the port is in an un-
known state. The second is to trigger a plan for employing an operator agent
when the serial port is online.

If the employing plan fails, a contingency plan is created to wait until an
agent capable of handling the resource arrives at the MAS. In addition, a plan
to deal with possible problems informed by the operator agents was implemented
so that when a resource fails, the coordinator agent will order all agents in the
system using a serial port to stop acting or perceiving. So it will again start the
testing serial ports achievement plan.

Finally, when the serial ports are connected and controlled by an operator
agent, the coordinator will try to achieve the objective of walking around. For
this, three achievement plans were created. First, if the coordinator agent does
not have perceptions about obstacles, it will order all agents to inform the ex-
ogenous perceptions. In the second, if the coordinator has received information
that there is no obstacle, it will order the agents to act. Finally, if it has received
information about an obstacle, it will order stopping acting. The coordinator
agent code is presented in Code 1.1.
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Code 1.1. coordinator.asl

/* Initial goals */
!testPorts.

/% Plans */

+!testPorts: not using(ttyUSBO) <- !search(ttyUSBO); .wait(5000); !testPorts.
+!testPorts: not using(ttyUSB1) <- !search(ttyUSB1); .wait(5000); !testPorts.
-!testPorts <- +ready; !walkAround.

+!search(Port) <- argo.port(Port); argo.limit(2500); argo.percepts(open).
+port(P,S): P = unknown <- argo.percepts(close); .abolish(_[source(percept)]).
+port(P,S): S=on & resource(R) <- argo.port(none); !newResource(P,R).

+!newResource (Port,RN) [source(self)]: operator(Ag,R) & R = RN <-
.abolish(_[source(percept)]);
+using(Port) ;
.send (Ag,achieve,work(Port)).
-InewResource (Port,RN) <- .wait(operator(Ag,R)); !newResource(Port,RN).
+loffResource(N) [source(LayerAg)]: operator(A,R) & R = N & Ag = A <-
.drop_desire(walkAround) ;
.abolish(using(_));
.broadcast (achieve,leavePort);
!1testPorts.

+!walkAround: not obstacle(0) & using(ttyUSBO) & using(ttyUSB1)<-
.broadcast (askOne,obstacle(R));
.wait (obstacle(X));
!walkAround.

+lwalkAround: obstacle(0) & 0 = no & using(ttyUSBO) & using(ttyUSB1) <-
.broadcast (achieve,task(front));
.abolish(obstacle(_)[_1);
!walkAround.

+!walkAround: obstacle(0) & 0 = yes & using(ttyUSBO) & using(ttyUSB1)<-
.broadcast (achieve,task(stop));
.abolish(obstacle(_)[_]1);
!'walkAround.

Resource Operator Agent All resource operator agents initially aim to inform
the coordinator agent of their abilities. An achievement goal was implemented
to meet this objective that sends a message to the coordinator containing the
agent’s name and the resource’s name.

In addition, these agents have a plan that the coordinator agent can trigger
to start the serial port control activities. When connecting to the port, agents
receive perceptions about serial port status. Two plans were programmed. The
first one, if the serial port is on, the agent adds a mental notation that it is
ready. Conversely, if the serial port is off, the agent removes the mental notation
and sends a message informing the coordinator that the resource is unavailable.

Finally, four plans were implemented: the first was an achievement goal to dis-
connect from the serial port at the coordinator’s request, and the last three were
contingency plans. The operator agents’ standard code is presented in Code 1.2.
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Code 1.2. common/argoAgents.asl

/* Initial goals */
!infoCoordinator.

/% Plans */
+!infoCoordinator: myResource(R) <- .my_name(N); .send(coordinator,tell,operator(N,R)).

+!work (Port) [source(coordinator)] <- argo.port(Port); argo.percepts(open); !conf.
+port (Port,Status) [source(percept)]: Status = on & myResource(R) <- +ready.
+port (Port,Status) [source(percept)]: Status = off & myResource(R) <-

-ready;

argo.port (none) ;

.abolish(_[source(percept)]);

.send(coordinator,achieve,of fResource(R)).

+!leavePort [source(coordinator)] <- !disconf; argo.percepts(close); argo.port(none).
-1task(T).

-!conf.

-!disconf.

Below are presented the specific behaviors of each resource operator agent
used in the study case.

— Operator agent 1: Initially, the agent has a belief about the resource that it
can operate. In addition, it has seven achievement goals: the first configures
the resource perception cycle to occur every two seconds. The following five
are responsible for managing the sending of actuation commands to the
resource’s microcontroller. The last stops the actuator before releasing the
serial port communication. The first operator agent code is presented in
Code 1.3.

Code 1.3. resourceOperatorl.asl

/* Initial goals */
myResource (biped) .

/* Plans */
+lconf <- argo.limit(2000).

ISR NC N O

+!1task(T) [source(coordinator)]: not acting & ready & T=front & not status(walk) <-
IplatformOtto(walk) .

8| +!task(T) [source(coordinator)]: not acting & ready & T=left & not status(turnL)<-

!platformOtto (turnL) .

9| +!task(T) [source(coordinator)]: not acting & ready & T=right & not status(turnR)<-

!platformOtto(turnR) .

10| +!task(T) [source(coordinator)]: not acting & ready & T=stop & not status(stop) <-

'platformOtto(stop) .

11| +!platformOtto(Op) <- +acting; argo.act(Op); .wait(3000); -acting.

12

13| +!disconf: status(S) & S \== stop <- !platformOtto(stop); 'disconf.

14

15| { include("common/argoAgents.asl") }

— Operator agent 2: Like the previous one, this agent has an initial belief
about the resource it can operate. Moreover, an achievement goal is to carry
out the configuration of perception. Finally, it has four plans that manipulate
a mental notation regarding the existence or not of an obstacle ahead. The
second operator agent code is presented in Code 1.4.
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Code 1.4. resourceOperator2.asl

/* Initial goals */
myResource (obstaclelR).

/* Plans */
+lconf <- argo.limit(1000).

+left(L): right(R) & R=1 & L=1 <- -+obstacle(no).
+right(R): left(L) & R=1 & L=1 <- -+obstacle(no).
+right(R): left(L) & (R=0 | L=0) <- -+obstacle(yes).
+left(L): right(R) & (R=0 | L=0) <- -+obstacle(yes).

{ include("common/argoAgents.asl") }

Operator agent 3: This agent has two initial beliefs, the first referring
to the resource it is capable of operating and the second referring to the
minimum limit in centimeters to consider that there is an obstacle ahead.
Finally, it has two plans that manage a mental notation about the existence
of an obstacle ahead. The third operator agent code is presented in Code 1.5.

Code 1.5. resourceOperator3.asl

/* Initial goals */
myResource (ultrasonicSensor) .
minimalDistance(20).

/* Plans */
+!conf <- argo.limit(1000).

+distance(N): minimalDistance(D) & N <= D <- -+obstacle(yes).
+distance(N): minimalDistance(D) & N > D <- -+obstacle(no).

{ include("common/argoAgents.asl") }

Operator agent 4: Like the others, the last operator agent has an initial
belief about the resource it operates and a plan for configuring the perception
cycle. The following four achievement plans manage the actuator. The final
plan is responsible for stopping the action when the coordinator agent re-
quests the release of the serial port. The code of the fourth resource operator
agent is presented in Code 1.6.

Code 1.6. resourceOperator4.asl

/* Initial goals */
myResource (wd) .

/* Plans */
+lconf <- argo.limit(1000).

+!1task(T) [source(coordinator)]: ready & T=front & not status(running)<-
argo.act(goAhead) .

+!1task(T) [source(coordinator)]: ready & T=left & not status(turnL)<- argo.act(goLeft).

+1task(T) [source(coordinator)]: ready & T=right & not status(turnR)<- argo.act(goRiht).

+!task(T) [source(coordinator)]: ready & T=stop & not status(stop)<- argo.act(stop).

+!disconf: status(S) & S \== stop <- argo.act(stop); .wait(2000); !disconf.

{ include("common/argoAgents.asl") }
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4.2 Scenario 1: Initial Embedded MAS

In this scenario, the Embedded MAS has no sensor or actuator. Resources are
not initially used for acting or perceiving the physical environment. The rea-
soning, in turn, runs on a Raspberry Pi Zero W, powered by a 5200 mAh (
5V, 1.0A) portable battery. However, the system must be prepared to receive
a new resource at anytime. Thus, an OTG cable and a USB hub are used in
the serial communication layer to allow receiving new resources to the system
at runtime. Figure 5 shows the necessary hardware to host the Embedded MAS.
Additionally, we deploy an image of ChonOS [15] (chonos-beta-RPI-Zero-W') in
a memory card, insert the card into the device, boot the system, connect it to
the network, run the update of all system packages, and restart the device.

< oooo

fritzing

Fig. 5. Schematic of the necessary hardware to host the Embedded MAS.

- Reasoning Layer with Jason Embedded It was necessary to program an
Embedded MAS with two initial agents, to fulfill the first scenario using the
Jason Embedded. For this, we use the IDE that comes with the ChonOS instal-
lation (Figure 6). The first agent is the coordinator with an Argo architecture,
presented in Code 1.1 from Section 4.1. The second agent is the telephonist with
a Communicator architecture, responsible for managing MAS communications
through an IoT gateway.

The telephonist agent (Code 1.7) has initial beliefs that represent the address
of a gateway and its identification in the IoT network. Its initial goal is to stay
connected to the network, and for that, an achievement goal was implemented
to use .connectCN internal action. Two plans are implemented to allow com-
munication management with other MAS: the first is to answer to the sender’s
attempt of connection, informing that the communication is ready; the second
is to forward the received message to one internal agent in the MAS.
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chonIDE S @ Networks @ Bot name £ Mind Inspector © Logs

embeddedMAS telephonist Communicator

Vi et Syt /* Initial beliefs and rules */

Agents /* Initial goals */

coordinator
Istart.

telephonist
a /* Plans */

2= Firmware )
+lstart <- .print("Hello world!").

Libraries

Javino

Fig. 6. Developing the Embedded MAS using ChonIDE[13].

Code 1.7. telephonist.asl

/* Initial beliefs and Tules */
myID("10348514-519f-439b-afd7-7330027f4b70") .
srv("skynet.chon.group",5500). //public IoT gateway address

/* Initial goals */
!connect.

/* Plans */
+!connect: myID(ID) & srv(S,P) <- .connectCN(S,P,ID).

+communication(trying) [source(X)] <- .sendOut(X,tell,communication(ok)).

+!retransmit (Dest,Force,Content) [source(X)] <- .send(Dest,Force,Content).

A MAS developed with Jason Embedded is an Open MAS. This way, new
agents can be added at runtime. Adding operator agents in the initial scenario
is unnecessary, and the MAS is easily adaptable to other scenarios.

- Reasoning Layer with Jason-CLI It was necessary to program an Embed-
ded MAS with one initial agent, to fulfill the first scenario using the Jason. For
it, we installed the ChonOS Jason-CLI package®; after that, an initial project
was created, and finally, it was necessary to import the Argo package? into the
project libraries directory. Figure 7 shows the Jason-CLI environment prepara-
tion process.

The initial project was changed to serve the scenario, according to Code 1.8.
The initial MAS has the coordinator agent, presented in Code 1.1 from Sec-
tion 4.1, which now uses the Argo architecture.

3 https://github.com/chon-group/dpkg-jason
* https://github.com/chon-group/argo
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1§ ssh root@myrobot.bot.chon.group
root@myrobot.bot.chon.group's password:
Linux myrobot 6.1.21+ #1642 Mon Apr 3 17:19:14 BST 2023 armv6l Installing jason-cli package
root@myrobot:~# apt install jason-cli -y
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
root@myrobot:~# jason app create embeddeMASZ --console

Creating directory embeddeMAsz Creating project

You can run your application with:
$ jason embeddeMAS2/embeddeMAS2.ma:

wget https://github.com/chon-group/argo/raw/master/out/argo.jar -P embeddeMAS2/1ib/
- https://github.com/chon-group/argo/raw/masterfout/argo.jar

olving github.com (github.com)... 20.201.28.151
Connecting to github.com (github.com)|20.201.28.151|:443... connected. Importing Argo package

root@myrobot:~# jason embeddeMAS2/embeddeMAS2.mas2j
Downl /services.gradle.org/distributions/gradle-8.0.2-bin.zip

[bob] hello world.
alice] hello world. .
E(,méwmm:.,,, Executing hello world
logout
Connection to myrobot.bot.chon.group closed.

:~$

Fig. 7. Developing the MAS using Jason[4] through CLI.

Code 1.8. embeddedMAS2.mas?2j

MAS embeddedMAS2 {
agents: coordinator agentArchClass jason.Argo;
aslSourcePath: "src/agt";

}

- Reasoning Layer with JaCaMo It was necessary to program an Embed-
ded MAS with all agents, to fulfill the first scenario using the JaCaMo. For it,
we installed the ChonOS JaCaMo-CLI package®; after that, an initial project
was created, and finally, it was necessary to import the Argo-jcm packageS into
project file. Figure 8 shows the jacamo-cli environment preparation process.

The initial project was changed to serve the scenario, according to Code 1.8.
The initial MAS has the coordinator agent, presented in Code 1.1 and operator
agents, presented in Codes 1.3-1.6 from Section 4.1, which now uses the Argo
architecture.

Code 1.9. embeddedMAS3.jcm

mas embeddedMAS3 {
agent resourceOperatorl { ag-arch: jason.Argo

igent resourceOperator2 { ag-arch: jason.Argo

zgent resourceOperator3 { ag-arch: jason.Argo

igent resourceOperator4 { ag-arch: jason.Argo

igent coordinator { ag-arch: jason.Argo

ises package: argo '"com.github.chon-group:argo-jcm:1.0.1"
}

® https://github.com/chon-group/dpkg-jacamo
S https://github.com/chon-group/argo-jcm
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: § ssh root@nyrobot.bot.chon.group

TR A SR ) Installing jacamo-cli package

root@myrobot

root@myrobot:~# jacamo app create embeddedMAS3 --console
Creating directory embeddedMAs3
You can run your application with

$ jacamo embedded!

Creating project

new. embeddedM
AS3# jacamo embedde:

uses packag edded! cm > new.jcm
N

[Mois
[Cartago] Wo:
fCanteas Rantt fectie s Executing hello world

[bob] join workspace /m

artifact c1 (at workspace /main/w) using namespace default
+ done
artifact g1 (at workspace /mainfo) using namespace default
: done
artifact o (at workspace /main/o) using namespace default
: done
hello world.
:~/embeddedMAS3#

Connection to myrobot.bot.chon.group closed.

Fig. 8. Developing the MAS using JaCaMo[3] through CLI.

4.3 Scenario 2 - Addition

All interventions performed in the four layers to meet the second scenario will
be described in this subsection.

Hardware Layer For this scenario, two resources were assembled and con-
nected to the USB hub of the prototype at runtime. The first, shown in Figure 9,
is an actuator (biped platform) formed by four Micro Servo 9g SG90 TowerPro.
The second, shown in Figure 10, is an obstacle sensor formed by two IR Sensor
Modules.

UNO)_

wom Arduine”

fritzing

fritzing
Fig. 10. Schematic of the resource

Fig. 9. Schematic of the resource 1. 2.
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Firmware and Serial Layer We used the Otto Library to program the mi-
crocontroller of the first resource. The microcontroller receives commands (walk,
turnL, or turnR) to act in the environment. Besides, it sends two beliefs to the
agent, one is the platform’s status, and the other is the resource name. Code 1.10
presents the firmware programming of the resource.

Code 1.10. biped.ino

#include <Javino.h> //https://github.com/chon-group/javino2arduino
#include <O0tto.h> //https://github.com/0ttoDIY/0ttoDIYLib

Javino javino;

Otto Otto;

String strStatus = H

void serialEvent(){javino.readSerial();}
void setup(){javino.start(9600); Otto.init(4, 5, 2, 3, true, 0);}

void loop(){if(javino.availableMsg()){

if (javino.getMsg()== ){javino.sendMsg( +
strStatus+ )}
else{strStatus = javino.getMsg();}}
delay(100) ;
action(strStatus);
¥
void action(String strCMD){
if (strCMD == ){0tto.walk(1,1000,1);}
else if (strCMD == ){0tto.turn(1,1000,1);}
else if (strCMD == ){0tto.turn(1,1000,-1);}
¥

The microcontroller of the second resource sends three beliefs to the agent,
one is the resource name, and the next two are the status of the obstacle ahead.
Code 1.11 presents the firmware programming of the second resource.

Code 1.11. obstacle.ino

#include <Javino.h> //https://github.com/chon-group/javino2arduino
Javino javino;

void serialEvent(){javino.readSerial();}
void setup(){javino.start(9600); pinMode(3, INPUT); pinMode(2, INPUT);}

void loop() {

if (javino.availableMsg()){if (javino.getMsg() == ){
javino.sendMsg( +
String(digitalRead(3))+ + String(digitalRead(2))+ )5}

}

}

In both cases, the Javino library for Arduino provides the integration of the
firmware layer with the reasoning layer.

Reasoning Layer This layer had different implementations for each of the
frameworks used. The operator agent for resource 1 was described in Code 1.3
and the operator agent for resource 2 was described in Code 1.4, both in Sec-
tion 4.1.
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Using Jason Embedded: In this case, it was necessary to program a Com-
municator agent in an external MAS to send the operator. This agent has
plans to test communication with the operator agent running on the Em-
bedded MAS. After confirming the connection, the agent executes a plan
responsible for sending the operator using the mutualism protocol. Finally,
an execution request plan is triggered so that the operator agent, newly ar-
rived at the MAS, informs the coordinator agent. Code 1.12 presents the
sender agent plans.

Code 1.12. sender.asl

embMAS ("10348514-519f-439b-afd7-7330027£4b70") . /* Initial belief*/

Istart. /* Initial goal*/

/* Plans */

+!start <-
.connectCN("skynet.chon.group",5500,"19566fee-4bc6-45eb-8f72-455552d50116") ;
+connected; !testComm.

+!testComm: communication(ok) <- !transmit.
+!testComm : connected & not communication(ok) & embMAS(E)<-
.sendOut (E, tell, communication(trying)); .wait(3000); !testComm.

+!transmit <-
!'sendAgent (operatorl); !requestExecution(operatorl, infoCoordinator);
!sendAgent (operator2); !requestExecution(operator2, infoCoordinator) ;
.disconnectCN; .stopMAS.
+!sendAgent (Agent) : embMAS(E) <- .moveOut(E,mutualism,Agent).
+!requestExecution(Receiver, Operation): embMAS(E) <-
.sendOut (E, achieve, retransmit(Receiver,achieve,Operation)).

Using Jason: In this case, shell access to the operating system that hosts
the Embedded MAS is required. So, the developer must input the agents
into the running MAS using Jason-CLI. Code 1.13 presents the necessary
terminal commands.

Code 1.13. jason-cli terminal commands

root@myrobot:~# cd embeddedMAS2/

root@myrobot:~/embeddedMAS2# jason agent start operatorl --ag-arch=jason.Argo
root@myrobot:~/embeddedMAS2# jason agent load-into --source=newAgents/opl.asl operatoril
root@myrobot:~/embeddedMAS2# jason agent start operator2 --ag-arch=jason.Argo
root@myrobot:~/embeddedMAS2# jason agent load-into --source=newAgents/op2.asl operator2

4.4 Scenario 3 - Fault tolerance

This scenario is accomplished by the port plan (+port(Port,Status)) common to
all Argo agents, described in Code 1.2 (in Section 4.1). If some communication
problem arises with the reasoning layer (Status=off context), the agent sends a
message to the coordinating agent(.send(coordinator,achieve,offResource(R)).

The coordinator agent, in turn, gives up on reaching the goal of walking

around (.drop_desire(walkAround)), asks all agents to release the serial ports
(.broadcast(achieve,leavePort)), clears its beliefs about the use of ports (.abol-
ish(using(-)) and start testing the serial ports again, and then employ the op-
erator agents. The Codel.1, described in Section 4.1, presents the coordinating
agent’s plans to deal with this scenario of failure in communication with the

resources.
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4.5 Scenario 4 - Upgrade

Interventions performed in the four layers to meet scenario 4 are described in
this subsection.

Hardware Layer A distance sensor was made to meet this scenario. It consists
of an ultrasonic sensor HC-SR04. Besides, resource 2 was removed from the USB
port, and resource 3 has been plugged into its place. The resource schematic is
shown in Figure 11.

fritzing

Fig. 11. Schematic of the resource 3.

Firmware and Serial Layer To program the firmware for this resource, we
used the HCSRO04 library. The microcontroller informs the operator agent of the
distance in centimeters and the resource’s name. To allow communication be-
tween the layers, the Javino library for Arduino was used. The resource schedule
is presented in the Code 1.14.

Code 1.14. ultrasonic.ino

#include <Javino.h> //Available at: https://github.com/chon-group/javino2arduino
#include <HCSRO4.h> //Available at: https://www.arduinolibraries.info/libraries/hcsr04
Javino javino;

HCSR04 hc(8, 7);

void serialEvent(){javino.readSerial();}
void setup() {javino.start(9600); pinMode(7, INPUT); pinMode(8, OUTPUT);}
void loop(){if (javino.availableMsg()){

if (javino.getMsg()=="getPercepts"){javino.sendMsg("distance ("
+String(hc.dist())+") ;resource(ultrasonicSensor);");}}
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Reasoning Layer In the reasoning layer, using Jason Embedded, it was nec-
essary to implement a MAS to send the coordinator agent in the same way
as performed in scenario number 2 (Codel.12). The only difference in this sce-
nario is that only one agent is sent. Operator agent 3, described in Codel.5
(section 4.1). Similarly, when using Jason, the developer must have access to
the operating system hosting the MAS to run the terminal commands, add an
empty agent to the SMA, and later load the plans described above.

4.6 Scenario 5 - SWAP
Interventions performed in the four layers to meet scenario 5 are described in

this subsection.

Hardware Layer In this scenario, a 2WD robotic platform was used. Resource
1 has been removed from the USB port, and this resource has been plugged into
its place. The schematic of resource 4 is shown in Figure 12.

fritzing

Fig. 12. Schematic of the resource 4.

Firmware and Serial Layer The microcontroller of resource 4 receives the
commands (goAhead, goLeft, goRight, or stop) sent by the operator agent to act
in the environment. In addition, the microcontroller reports the actuators’ status
to the agent. The Javino library for Arduino provides communication between
the agent and the resource. The programming is presented in Code 1.15.

Reasoning Layer In the reasoning layer, using Jason Embedded, it was nec-
essary to implement a MAS to send the coordinator agent in the same way as
performed in scenarios 2 and 3 (Codel.12). This operator agent is described in
Codel.6, in Section 4.1. Similarly, when using Jason, the developer must have
access to the operating system hosting the MAS, to run the terminal commands
to add an empty agent to the SMA and later load the plans described above.
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Code 1.15. 2WD.ino

#include <Javino.h> //Available at: https://github.com/chon-group/javino2arduino
Javino javino;
String strMotorStatus;

void serialEvent(){ javino.readSerial(); }

void setup(){javino.start(9600); pinMode(5, OUTPUT); pinMode(6, OUTPUT);
pinMode (9, OUTPUT); pinMode(10, OUTPUT);}

void loop(){
if (javino.availableMsg()){
String strMsg = javino.getMsg();

if (strMsg== ) javino.sendMsg( +strMotorStatus+ N
else if(strMsg== )stopRightNow() ;
else if (strMsg== )turnLeft();
else if(strMsg== )turnRight () ;
else if(strMsg== )goAhead () ;
}
}

void stopRightNow(){digitalWrite(5, LOW); digitalWrite(6, LOW); digitalWrite(9, LOW);
digitalWrite(10, LOW); strMotorStatus= s}

void goAhead(){stopRightNow(); digitalWrite(6, HIGH); digitalWrite(10, HIGH);
strMotorStatus= g

void turnRight () {stopRightNow(); digitalWrite(5, HIGH); digitalWrite(10, HIGH);
strMotorStatus= B

void turnLeft(){stopRightNow(); digitalWrite(6, HIGH); digitalWrite(9, HIGH);
strMotorStatus= 3}

5 CONCLUSIONS

This work presented three approaches to adding, removing, and swapping re-
sources (sensors or actuators) in Embedded MAS at runtime using a customized
agent architecture capable of perceiving the availability of microcontrollers inte-
grated into the system via serial communication. The first approach uses an IoT
infrastructure to receive or send agents able to operate resources unknown by a
society of agents. In this approach, we used Jason Embedded and ChonIDE.

Considering the access to the CLI of the operating system that hosts the
Embedded MAS, the second approach uses the developer’s ability to create and
include new agents capable of operating a new resource in the runtime. In this
approach, we used Jason-CLI.

In the third approach, we developed an Embedded MAS using JaCaMo-CLI.
However, in this approach, the creation or reception of new agents at runtime is
still open; therefore, all possible resources to be added at runtime must exist at
design time.

A case study with five possible runtime scenarios with an embedded MAS was
conducted to analyze the proposed approaches, demonstrating that swapping
resources at runtime is a promissory feature to guarantee the adaptability of
intelligent cyber-physical systems.

Adding resources allows an Embedded MAS to be updated and improved at
runtime without stopping it. Stopping a MAS can lead to some undesired situ-
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ations, for example, in a mission-critical domain, which could generate failures
because of the absence of information. Besides, when adding a new resource, it
would be necessary to modify the physical structure of the device, offering some
continuity and availability risks of the service that the device is running. Until
recently, any resource addition forces the device to be turned off, limiting the
adaptability inherent to a Cognitive MAS.

This discussion can also be expanded toward replacing and removing re-
sources at runtime. In embedded systems, it is not uncommon for components
to be damaged when interacting with the real world, given their unpredictability.
In the presented approaches, the replacement could be performed without risks
to the Embedded MAS if the damaged resource is replaced by another one of the
same logical structure connected to the same serial port. Removing a resource
(whether damaged or intentionally removed) leads to readapting the Embedded
MAS to avoid pursuing intentions and objectives that can no longer be achieved
due to the absence of interfacing. In this case, mechanisms for removing inten-
tions, objectives, or plans are necessary.

Swapping resources at runtime still requires a multidisciplinary effort from
the designer team since it has to know several areas (electronics, operating sys-
tems, object-oriented and agent-oriented programming). Besides, adding an to-
tally unknown resource is still an open issue in the domain. In future works, a
mechanism is needed for the dynamic management of resources in Embedded
MAS so that, when adding a new resource, the MAS would automatically rec-
ognize the device and its functionalities without transferring agents from other
systems or searching the necessary plans to operate the resource.
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