
A Modularized and Reusable Architecture for an Embedded MAS IDE

Gabriel Ramos Alves Lima1 a, Elaine Maria Pereira Siqueira1 b, Thácito R. Costa Medeiros1 c,
Carlos Eduardo Pantoja1 d, Nilson Mori Lazarin1,2 e and José Viterbo2 f

1Federal Center for Technological Education Celso Suckow da Fonseca (Cefet/RJ), Rio de Janeiro, Brazil
2Institute of Computing, Fluminense Federal University (UFF), Niterói - RJ, Brazil

{gabriel.ramos, elaine.siqueira, thacito.medeiros}@aluno.cefet-rj.br,

Keywords: Multi-Agent Systems, Software Architecture, Software Engineering, IDE, ChonIDE.

Abstract: The rise of the Embedded Multi-Agent Systems (MAS) field brings challenges regarding technologies specifi-
cally tailored for development in this area. Among these, chonIDE, as a new Integrated Development Environ-
ment (IDE) dedicated to this newly explored scenario, has gaps in its code that can be improved to meet market
demands. In this regard, this paper outlines a new architecture through the restructuring of the components
of this IDE to make it more scalable and, consequently, mitigate challenges in the Embedded MAS scenario.
Additionally, changes in file structure are suggested to promote code versioning and enhance interoperability
with other IDEs at the project reuse level, thus making it better adapted to market demands.

1 INTRODUCTION

Changes in the characteristics and expectations of
software systems have led to the emergence of a se-
ries of new software engineering challenges (Ten-
nenhouse, 2000; Zambonelli and Van Dyke Parunak,
2003). In this new scenario, the use of Multi-Agent
Systems (MAS) is advocated as a software engineer-
ing paradigm for designing and developing software
systems (Wooldridge and Jennings, 1995; Jennings,
2001; Wooldridge, 2009). In MAS, applications are
designed and developed in terms of autonomous soft-
ware entities (agents) that can achieve their goals
with flexibility by interacting with each other through
high-level protocols and languages. These character-
istics are well-suited for addressing emerging com-
plexities (Zambonelli et al., 2003).

Integrated Development Environments (IDEs)
widespread in the market, although sufficiently meet-
ing the user experience aspect by offering features
such as code versioning, indentation, syntax high-
lighting, among others, do not address the decen-
tralized nature of distributed systems with agents

a https://orcid.org/0009-0009-3233-9408
b https://orcid.org/0009-0006-1879-4891
c https://orcid.org/0009-0009-3310-714X
d https://orcid.org/0000-0002-7099-4974
e https://orcid.org/0000-0002-4240-3997
f https://orcid.org/0000-0002-0339-6624

(Tennenhouse, 2000). This is because these sys-
tems have unique contextual needs, such as remote
embedding of projects, Agent-Oriented Programming
(AOP), and embedding of devices on single-board
computers, monitoring agent interactions and percep-
tions, among others.

The success and general implementation of com-
plex software systems based on Multi-Agent Systems
(MAS) require new models and technologies (Zam-
bonelli et al., 2003). Among these technologies,
chonIDE (Souza de Jesus et al., 2023) stands out in
supporting Embedded MAS compared to other IDEs
due to its specialized nature, which takes into account
the specific demands of this scenario. However, the
architecture of chonIDE is not flexible or extensible
to changes, due to its tightly coupled nature, which
leads to low scalability potential regarding features. It
also does not ensure interoperability, as the file struc-
ture of its projects is not compatible with other IDEs,
preventing the reuse of its projects.

Therefore, this paper proposes a new architecture
for chonIDE through the restructuring of its compo-
nents, aiming to make it less tightly coupled and, con-
sequently, more scalable to enable the addition of new
functionalities via third parties and facilitate unit test-
ing, extensibility, and flexibility, among others. Ad-
ditionally, a new folder and file structure has been
implemented to provide code versioning and ensure
interoperability between projects.

1034
Lima, G. R. A., Siqueira, E. M. P., Medeiros, T. R. C., Pantoja, C. E., Lazarin, N. M. and Viterbo, J.
A Modularized and Reusable Architecture for an Embedded MAS IDE.
DOI: 10.5220/0013439600003929
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 27th International Conference on Enterprise Information Systems (ICEIS 2025) - Volume 1, pages 1034-1045
ISBN: 978-989-758-749-8; ISSN: 2184-4992
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



This paper is organized as follows: Section 2
presents an extended comparative table of related
work; Section 3 explains the components of the
toolkit, their respective functions, and relationships;
Section 4 introduces the new modular and scalable
architecture, including the modeling and implemen-
tation that enable the folder and file structure for
projects; and finally, Section 5 discusses the final con-
siderations and expectations for future work.

2 RELATED WORK

A comparative analysis of IDEs for Embedded MAS
Development (Siqueira et al., 2024) considered vari-
ous software development factors by comparing pop-
ular IDEs on the market with the availability of
IDEs for Embedded MAS development. In this case,
the comparison took into account Eclipse, VSCode,
and IntelliJ IDEs based on the following characteris-
tics: installation, platforms, usage license, user man-
ual, user community, developer community, interface,
compilers or interpreters, debugger, editor, syntax
checking, syntax highlighting, autocompletion, quick
help, and indenting.

Considering the context of Embedded MAS, it is
relevant to add functionalities such as remote project
deployment, Agent-Oriented Programming, deploy-
ment on single-board computers, and monitoring of
agent interactions and perceptions to the analysis cri-
teria of the table. These characteristics increase the
level of abstraction between the developer and the re-
sources used in software engineering processes, al-
lowing them to focus primarily on designing the ap-
plication they are creating without worrying about, for
example, manual integration configurations that are
necessary when using general-purpose tools.

Furthermore, the installation of the IDE should
be easy and quick, allowing the user to start using it
as soon as possible. It is important for the IDE to
work on the most common hardware/software plat-
forms, including Windows, Linux, and macOS. IDEs
distributed under open-source licenses are preferable
due to their accessibility. It is desirable that the user
manual be as complete as possible so that the user can
resolve initial doubts without having to search in fo-
rums. A large community is a positive aspect, as it
facilitates the resolution of any issues that may arise.
Typically, IDEs developed by groups receive updates
more quickly than those developed by a single per-
son. The interface should be intuitive, clean, and user-
friendly (Siqueira et al., 2024). Table 1 shows the
comparison of desired functionalities in an IDE.

It is highly desirable for the debugger to be in-

tegrated, as it facilitates the identification of logical
issues. A powerful editor with various features can be
helpful, such as line numbering for locating reported
errors, multiple tabs for quick viewing of different
files, and current line highlighting for easier naviga-
tion within the file, among other features considered
below. Syntax checking is a very useful feature, as
it notifies the user when there is something wrong
with the code before the compiler or interpreter is run.
Syntax highlighting is important, as it displays the
code in a way that makes it easy to visualize and lo-
cate functions, variables, constants, strings, operators,
and more. Autocompletion aids in typing the code,
reducing errors. Quick help provides tips when the
mouse hovers over certain parts of the code. The in-
denting feature is responsible for formatting the code,
helping with its organization, and improving readabil-
ity.

Table 1: Functionalities Comparison between IDEs.
chonIDE Eclipse VSCode IntelliJ

Easy to Install
Multiplatform

Multilingual
Free to Use

Clean Interface
Debugger

Syntax Check
Syntax Highlighting

Autocomplete
Quick Help

Multiple Tabs
User Manual

File Viewer
Line Counter

Highlighted
Current Line

Indentation
Remote Deployment

of Projects
Single Interface to

Embedded MAS Pro-
gramming Paradigms

Monitoring agents
interactions

and perceptions

3 FRAMEWORK

The chonIDE (Jesus et al., 2022; Souza de Jesus
et al., 2023) is an environment that integrates, within
a single-screen experience, both a set of technolo-
gies enabling the development of Embedded MAS
and typical features of a modern IDE that assist dur-
ing software design and allows designers to access
and use these development resources effectively. This
section explores the software components of chonIDE
and their relationships with other parts of the toolkit
for developing Embedded MAS, presented in Figure
1, to describe the IDE’s functionality.

A Modularized and Reusable Architecture for an Embedded MAS IDE

1035



Figure 1: ChonIDE System Flow.

The interfacing between chonIDE (1), the imple-
mentation, and the management of the system de-
signed by the developer is performed by chonOS:
Cognitive Hardware on Network - Operating Sys-
tem1(2), a GNU/Linux distribution with the specific
purpose of facilitating the conception and use of Em-
bedded MAS This solution introduces a new layer
into the development architecture (Lazarin et al.,
2023). Alongside the four existing layers— Hard-
ware, Firmware, Interface, and Reasoning (Pantoja
et al., 2016) — a fifth layer, Management, is added.
This layer enables remote control between the de-
veloper’s computer and single-board embedded hard-
ware (e.g., Raspberry Pi), achieved through Shell
Script-based services and modules (2.1 and 2.2) that
abstract different technological dependencies, provid-
ing access to several real-time resources. This capa-
bility spans the entire embedding experience through
SSH communication within the same Wi-Fi network
(2, 6, and 7).

Thus, remote management of the Firmware and
Reasoning layers of the embedded hardware by the
designer is made possible, with emphasis on:

• Sending source code to the Arduino boards (5) us-
ing the Arduino CLI (4).

• Implementing the Embedded MAS through the
BDI frameworks supported by the distribution —
Jason (Bordini et al., 2007), JaCaMo (Boissier
et al., 2020), and Jason Embedded (Pantoja et al.,
2023) (3).

• Visualization of agent logs — event and mes-
sage records — during Embedded SMA activity
and other system information through log service
(2.2), a web page incorporated directly into the

1https://os.chon.group

graphical interface (1.2).
Among the BDI frameworks previously men-

tioned for the implementation of MAS, the IDE uses,
via ChonOS (2), the Jason Embedded (3), which is an
extended version of Jason (Bordini et al., 2005) that
supports the development of Embedded MAS to pro-
vide autonomy and communicability to IoT devices
and mobility and adaptability to agents (Pantoja et al.,
2023). Additionally, this component includes a fea-
ture called the Mind API (3.1), a REST API that al-
lows inspection of the agents’ minds—beliefs, rules,
intentions, and plans—at a given cycle. Through the
application (1.1), it is possible to query the most re-
cent state of all agents or a specific agent within a
particular cycle directly via the Mind Inspector graph-
ical component, integrated into the right sidebar of the
chonIDE interface (1.2).

Finally, the application (1.1) should serve as the
integration and provision platform for the functionali-
ties of the components that enable the development of
Embedded MAS (2 and 3), as well as resources char-
acteristic of an enhanced programming experience —
such as the system management dynamics of the IDE
project files, which will be structured, and the source
code versioning through Git, which will be enabled
— all in a uniform and centralized manner, specified
through an API for consumption by the user inter-
face (1.2), which is also provided by this component
for the developer’s Browser (8) (e.g., Mozilla Firefox,
Google Chrome).

That being said, after specifying the parts that
make up the IDE system, its resources, and their re-
spective relationships, it is necessary to define a re-
structuring and establish an architecture for the appli-
cation (1.1) that is capable of integrating the differ-
ent mechanics and resources of the toolset in a scal-
able, modular, and decoupled manner. This new ar-

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

1036



chitecture should facilitate implementing and scaling
new functionalities, such as project file management
within the IDE and versioning through Git.

4 THE ARCHITECTURE

The IDE application consists of a web layer, which
provides the pages for the developer’s browser and
specifies an API responsible for managing commu-
nication with the user interface, and an implementa-
tion layer, which is responsible for implementing the
integration, access methods, and manipulation of the
development resources provided by the solution.

In this context, the implementation layer conse-
quently centralizes elements that handle data persis-
tence, communication with external services, util-
ity mechanics, domain dynamics, and business logic,
which makes the structure tightly coupled. As a re-
sult, it is not feasible to ensure aspects such as scala-
bility, the extensibility of current and future function-
alities, and the creation of unit tests — key aspects for
solutions that encompass a variety of dynamics within
the same context.

Based on the presented scenario, an architec-
ture modularizing the implementation layer should
be defined. Considering that the source code is im-
plemented in Java, object-oriented concepts such as
inheritance, composition, interfaces, polymorphism,
and dependency injections (Fowler, 2004) are ex-
plored. Additionally, structures based on design pat-
terns (Gamma, 1995) and layer patterns (Fowler,
2002) are employed.

4.1 Layers

It is proposed to divide the implementation layer into
three other layers for the architectural process: in-
frastructure, application, and domain (Fowler, 2002;
Evans, 2004). This approach organizes the structure
into hierarchical levels to separate responsibilities and
simplify system maintenance and evolution. Further-
more, abstractions will be defined to promote mod-
ularization and low coupling as they establish clear
responsibilities for the application’s elements.

Initially, it is necessary to understand the nature of
access to the development resources to define the el-
ements responsible for interfacing with these external
means in a decoupled manner.

Based on the dynamics shown in Figure 2, it is
possible to determine the interfaces and implementa-
tions that define the access methods to the develop-
ment resources. For persistence in the file system:

Figure 2: Access methods to development resources.

• FileRepository: Interface that defines file manipu-
lation operations such as reading, creating, updat-
ing , and deleting (Figure 3).

– LocalFileRepository: Implements file manipu-
lation on the machine system on which the ap-
plication operates (locally) using native Java li-
braries.

For executing commands via the prompt, also
considering aspects such as remote access via
SSH, the following are defined:

• CommandPromptRunner: Interface that defines
the execution of commands via terminal (Fig-
ure 4).

– LocalCommandPromptRunner: Implements
the execution of commands on the machine’s
local terminal on which the application oper-
ates (local).

• SSHHandler: Interface that defines access to SSH
resources (e.g., SFTP) and the remote execution
of commands via terminal (extends Command-
PromptRunner) (Figure 4).

– JschSshHandler: The default implementation
of this abstraction, using the JSCH library 2.

For access to Web APIs, the following is defined:

• HttpClient: Interface that defines communica-
tion operations via the HTTP protocol, con-
sidering aspects such as request (HttpRequest)
and response (HttpResponse): data body (Http-
Body); request parameters (HttpQueryParame-
ter); request method (HttpMethod); and the re-
sponse return code (Figure 5).

– StandardHttpClient: The default implementa-
tion of this abstraction, using native Java li-
braries.

The interfaces presented follow the ports pattern
(Fowler, 2002) — CommandPromptRunner and Http-
Client — and the repositories pattern (Evans, 2004)

2Available at http://www.jcraft.com/jsch/

A Modularized and Reusable Architecture for an Embedded MAS IDE

1037



Figure 3: File persistence interface and classes.

Figure 4: SSH and Prompt Executor interface and classes.

Figure 5: HTTP client interface and classes.

— FileRepository. Both abstract technical details and
encapsulate the communication that enables access
and manipulation of an external resource, providing
a single entry point for requests and abstracting the
complexity of an underlying system. At the same
time, the implementations serve as adapters (Fowler,
2002) , determining real behavior within the system
influenced by a specific technology or the desired
context.

Additionally, a reusable instance is required to
convert json into object instances (and vice versa),
enabling the manipulation of response contents from
the Mind API, chonOS modules, and, eventually, Git
when applicable. For this purpose, is defined a strat-
egy (Gamma, 1995) that provides access to this im-
plementation, and a singleton (Gamma, 1995) that en-
sures a unique instance for the system:

• JsonConverter: Interface that defines the opera-
tions for serializing and deserializing JSON con-
tent to instances of application classes (Figure 6).

Figure 6: Json classes.

– StandardJsonConverter: The default imple-
mentation of this abstraction, using native Java
libraries (Corporation, 2024).

• JsonConverterProvider: Singleton that provides a
unique instance of JsonConverter for the applica-
tion (Figure 6).

Considering that the implementations defined —
adapters and strategies — are purely technical and
disconnected from any business logic, they should be
directed to the infrastructure layer, which is respon-
sible for providing the necessary technical and utility
services for the other layers of the architecture (appli-
cation and domain), such as communication with ex-
ternal services, data persistence, and utility elements.
Thus, it is possible to decouple the technical imple-
mentation for external access from the rest of the ap-
plication.

Moreover, an application layer is established,
which, through application services, is responsible
for orchestrating use cases and coordinating activi-
ties between elements that provide access to the de-
velopment resources. Thus, by merely determining
these two layers (infrastructure and application) and
their elements, it is possible to provide access to the
Mind API, chonOS, and, in the future, Git, as exter-
nal services define their operating mechanics, in other
words, they are not part of the IDE application do-
main, so do not require extensive manipulation of re-
turned content or internal logic.

However, in the case of managing project file sys-
tems, business rules need to be added since its me-
chanics will be defined by the application, given that
it is a development resource within the IDE domain.
For this case, a domain layer is defined, with its
respective domain services, which encapsulate a set
of operations containing system logic for managing
multiple entities or data sources, and domain models
(Evans, 2004), which are abstractions designed to re-
flect business concepts and behaviors and serve as a
cohesive core for organizing and expressing system
knowledge.

In this way, a decoupled architecture between its
elements and modularized layers is achieved, allow-
ing the system’s scalability, as demonstrated in Figure
7. From this general definition, the next subsections

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

1038



Figure 7: Application architecture.

will detail the specific abstractions and their use cases
for accessing the development resources.

4.2 chonOS

The chonOS distribution provides functionalities that
streamline the deployment and management process
of Embedded MAS by introducing a set of modules
accessed via Shell Script, which are as follows:

• chonosEmbeddedMAS3 promotes the manage-
ment of BDI-based Embedded MAS at the rea-
soning layer of the system through the use of in-
terpreters supported by the solution— Jason (Bor-
dini et al., 2007), JaCaMo (Boissier et al., 2020),
or Jason Embedded (Pantoja et al., 2023), al-
lowing the project to be deployed, started, and
stopped.

• chonosFirmwareManager4 enables communica-
tion with the interface and firmware layers, thus
facilitating the deployment and updating of source

3https://os.chon.group/masmng/
4https://os.chon.group/firmwaremng/

code for Arduino boards, the detailed display of
information about boards connected to the hard-
ware, and the import, removal, and listing of li-
braries.

• chonosDDNSManager5 allows the definition and
updating of the Fully Qualified Domain Name
(FQDN) for the device, thereby eliminating the
need for the designer to know the embedded hard-
ware’s IP address on the current network.

• chonosWifiConn and chonosWifiConf 6 enable the
management of embedded hardware connectiv-
ity. They allow connection to a network in client
mode, the creation of a private network in AP
mode (with or without encryption), and the de-
tailed display of the connected network as well as
other nearby networks.

• chonosNeighbors7 allows the identification of all
embedded hardware devices on current network.

5https://os.chon.group/ddnsmng/
6https://os.chon.group/networkmng/
7https://os.chon.group/neighborsmng/

A Modularized and Reusable Architecture for an Embedded MAS IDE

1039



Figure 8: ChonOS services.

Based on this, each of the mentioned modules
is considered a development resource and must have
corresponding access abstractions. This will be
reflected in services within the application layer
that receive dependency injections from Command-
PromptRunner and JsonConverter. These services al-
low module execution via command prompt — ei-
ther locally (LocalCommandPromptRunner) on the
designer’s computer or remotely (JschSshHandler)
on the embedded hardware — and serialize the re-
sponse into object instances for straightforward ma-
nipulations, as illustrated in Figure 8.

4.3 Mind API

The Mind API is a REST API that provides infor-
mation about the current state or a specific cycle of
the agents’ minds in the MAS executed by the Jason
Embedded interpreter. To enable its access as a de-
velopment resource, a defined service within the ap-
plication layer receives dependency injections from
HttpClient to consume the API’s endpoints and Json-
Converter for response deserialization, as illustrated
in Figure 9.

Figure 9: Mind API Service.

4.4 IDE Project File System

The modeling was designed to support the use of the
Jason Embedded language and enable the extensi-

bility needed for integration with the JaCaMo plat-
form, providing a solid foundation for projects that
require modularity, scalability, and alignment with
agent-oriented programming paradigms.

The new structure emerged from the need to re-
organize folders and files in the IDE to improve
project control and management. In the previous
chonIDE, the entire project was stored in a sin-
gle .json file, hindering modularity and the integra-
tion of new functionalities. The proposed struc-
ture was developed to focus on future compatibility
with the JaCaMo platform, an open-source technol-
ogy for MAS that organizes projects across three di-
mensions: agents, environments, and organization.
These dimensions are implemented using Jason, for
programming autonomous agents; CArtAgO, which
models and manages artifacts in the environment;
and MOISE, which specifies and regulates multi-
agent organizations (Boissier et al., 2020). Figure
10 illustrates the planned folder structure, includ-
ing directories such as agent, environment (subdi-
vided into endogenous and exogenous), and organi-
zation, alongside example files such as agent.asl, ar-
tifact.java, file.ino, lib.zip, and project configuration
files (project.jcm or project.mas2j).

The folder structure modeling within the IDE do-
main organizes Embedded MAS projects across the
three dimensions and includes a project configuration
file. Figure 11 illustrates this architecture, highlight-
ing the relationship between the Project and Embed-
dedMAS classes, representing a project in IDE and
an Embedded Multi-Agent System, respectively. The
EmbeddedMAS class directly connects the three main
dimensions, represented by the Agency, Environment,
and Organization classes, to the project configura-
tion file. The MasConfiguration interface abstracts
various configuration file formats, ensuring flexibil-
ity to support both Jason Embedded and JaCaMo in
the future. Additionally, the ProjectFile interface pro-

Figure 10: Proposed new folder structure.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

1040



Figure 11: Class diagram of the project’s main structure.

vides the necessary abstraction for managing the di-
verse files comprising a project. The project’s concept
classes are:

• Project. Represents a project in IDE, organizing
projects by providing a name to identify them and
linking them to an EmbeddedMAS.

• EmbeddedMAS. Represents an Embedded
MAS, connecting the dimensions of agents,
environments, and organizations, along with the
project configuration file. This class centralizes
the logical structure of an Embedded MAS,
allowing the dimensions to interact cohesively
and adapt to the system’s specificities.

• ProjectFile. An interface that abstracts the differ-
ent types of files making up the project. This ab-
straction simplifies the integration of various files,
such as agents, artifacts, firmware, and project
configuration files, ensuring flexibility and mod-
ularity in IDE’s structure.

The dimensions of agents, environment, and or-
ganization, as well as configuration files, were struc-
tured independently to reflect the characteristics of an
Embedded MAS. This approach allows each dimen-
sion to be represented by specific classes that capture
their responsibilities and interactions, while the con-
figuration layer centralizes the information necessary
for system initialization and operation. Subsequent
paragraphs will detail each of these parts, accompa-
nied by diagrams illustrating their relationships.

The agent dimension organizes agents modularly,
allowing each to be treated as an independent unit
within the project. This structure enables the integra-
tion of different types of agents into the system, re-
flecting the specific demands of an Embedded MAS.
Figure 12 presents the class diagram for this dimen-
sion, highlighting agents and their respective classifi-
cations.

Figure 12: Agent dimension.

The agent dimension is represented by:

• Agency. Represents the layer responsible for
grouping the agents of an Embedded MAS. It cen-
tralizes agent management and allows new agents
to be easily added to the system.

• Agent. Defines an individual agent within the
project and is modeled as an extension of the Pro-
jectFile interface, representing .asl files in the sys-
tem’s folder structure. This approach ensures each
agent is stored independently, simplifying the or-
ganization and management of agents directly at
the file level. Furthermore, the class encapsu-
lates basic agent information, such as identity and
source code, and establishes the relationship be-
tween the agent and its architecture, enabling the
coexistence of different agent types within the
same system.

• AgentArchClass. An enumeration that cate-
gorizes possible agent architectures. This enu-
meration includes Jason representing standard
agents based on the BDI (Belief-Desire-Intention)
paradigm, widely used in MAS; Argo denoting
agents with specific capabilities for interacting
with hardware or physical components, such as
sensors and actuators (Pantoja et al., 2016); and
Communicator representing agents specialized in
communication between different MAS, ensur-
ing interoperability and efficient information ex-
change (Pantoja et al., 2018).

The environment dimension organizes the ele-
ments constituting the physical and logical context
in which the agents of an Embedded MAS operate.
This organization reflects the need for modular sepa-
ration between external aspects, related to the physi-
cal world, and internal ones, which are computational
abstractions used by agents to logically and efficiently

A Modularized and Reusable Architecture for an Embedded MAS IDE

1041



Figure 13: Environment dimension.

interact with the environment. Figure 13 presents the
class diagram for this dimension, illustrating how the
Environment class organizes the two types of envi-
ronments — exogenous (ExogenousEnv) and endoge-
nous (EndogenousEnv) — along with their respective
components.

The agent environment is represented by:

• Environment. The main class representing the
environment dimension in the project. It encapsu-
lates references to the exogenous and endogenous
environments, centralizing their management and
allowing integrated manipulation.

• ExogenousEnv. Represents the exogenous en-
vironment, which includes external elements such
as physical devices and libraries required for op-
eration (Ricci et al., 2012). This implementation
contains references to the Firmware and Library
classes, which represent files in this environment.

• Firmware. Project files (.ino) that encapsulate
the logic for controlling physical devices, such as
sensors and actuators. These files implement the
logic required to operate hardware components.

• Library. External library files used in the exoge-
nous environment to extend firmware function-
ality and integrate additional resources, such as
hardware communication support.

• EndogenousEnv. A computational abstraction
providing resources and functionalities to support
agent tasks within the system’s context. It reflects
the internal, logical context, enabling agents to in-
teract with the environment directly (Ricci et al.,
2012). This implementation includes references
to the SimulatedEnvironment class and an exten-
sible architecture to include Artifacts in the future,
allowing integration with the CArtAgO platform.

• Artifact. Represents artifacts defined in the envi-
ronment. These components abstract functionali-
ties or resources from the exogenous environment,
enabling agents to interact with them logically and

in a controlled manner. This resource type will be-
come available with the future implementation of
the CArtAgO platform, which provides a founda-
tion for modeling and managing artifacts in MAS
environments.

• SimulatedEnvironment. Additional files that
configure or customize the endogenous environ-
ment within a project. These files may include
specific definitions for connecting agents to the
environment or customizing their interaction.

The organization dimension (Organization) en-
compasses the elements responsible for structuring
an Embedded MAS project’s organization, centraliz-
ing definitions related to agent interactions, roles, and
hierarchies within the system (Boissier et al., 2020).
While the development and implementation of this di-
mension are planned for future work, its importance
lies in supporting organizational frameworks, such as
MOISE, which provide a formal foundation for mod-
eling multi-agent organizations.

The Model of Organization for Multi-Agent Sys-
tems (MOISE) (Hübner et al., 2002) is a platform
that offers a formal model for representing organiza-
tions in MAS. It is based on three main dimensions:
structure, which defines roles and hierarchical rela-
tionships among agents; functionality, which speci-
fies the goals and tasks to be achieved; and regulation,
which describes the plans and norms governing agent
actions. The use of MOISE in MAS development
enhances their organization and governance (Bordini
et al., 2007).

The project configuration layer organizes the es-
sential elements required to define and initialize an
Embedded MAS. It centralizes fundamental configu-
ration properties and allows the inclusion of a single
configuration file per project. Figure 14 illustrates the
class diagram for this layer, highlighting the MasCon-
figuration interface and its possible implementations:

Figure 14: Project configuration layer.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

1042



Mas2j and Jcm.

• MasConfiguration. An interface extending Pro-
jectFile that abstracts project configuration files.
It establishes a unified standard for structuring
the necessary information, facilitating the man-
agement of specific configurations.

• Mas2j. Represents project configuration files in
the .mas2j format, used in projects developed with
Jason Embedded. This type of file specifies agents
and their basic configurations, offering an orga-
nized structure for defining and initializing system
components.

• Jcm. Represents project configuration files in the
.jcm format, applicable to projects that will use
the JaCaMo platform. This file enables the inte-
gration of agents defined in Jason Embedded with
environmental artifacts and organizational struc-
tures, allowing synchronization across the sys-
tem’s different levels.

The new file structure implemented in IDE orga-
nizes the elements of Embedded MAS into indepen-
dent dimensions of agents, environment, and organi-
zation. This modular approach allows each dimen-
sion to be represented with specific files, facilitating
project management and expansion. The introduction
of a centralized project configuration layer abstracts
the .mas2j and .jcm formats, offering support for both
Jason Embedded and, in the future, JaCaMo.

This reorganization enables a clearer separation
between the system’s various components, improv-
ing internal structure and project clarity. Addition-
ally, dividing elements into distinct files simplifies
the implementation of new functionalities and inte-
gration with additional tools. With this modular struc-
ture, the development and application of a Git-based
version control system become feasible, allowing for

more specific and organized tracking of changes. This
restructured file base prepares IDE to support fu-
ture functionalities, promoting an organization that
reflects the requirements of Embedded MAS while fa-
cilitating project maintenance and evolution.

The Domain Service module in ChonIDE imple-
ments file, project, and path management services
modularly. This chapter details the ProjectFileSer-
vice interface and its implementations, highlighting
the Decorator design pattern, which enables flexi-
ble functionality extension, and the Singleton pattern,
which ensures a single controlled instance of a ser-
vice. It also covers the ProjectService and Project-
PathHandler interfaces and their implementations,
which collaborate to maintain consistency and ex-
tensibility in project element handling. Figure 15
presents the class diagram of these interfaces, their
implementations, and their relationships.

The ProjectFileService interface defines basic op-
erations such as loading, saving, deleting, and renam-
ing project files. StandardProjectFileService imple-
ments this interface using ProjectPathHandler to ob-
tain the correct file paths. For specific operations with
agent files, AgentFileService also implements Pro-
jectFileService, ensuring that agent files are handled
differently, interacting not only with the agent file it-
self but also with the project configuration layer.

In the file management service implementation,
the IntercepterProjectFileService acts as a decora-
tor (Gamma, 1995) by delegating operations to Stan-
dardProjectFileService or AgentFileService based on
the type of file being managed. This approach pro-
vides flexibility in handling different file types with-
out directly modifying existing services. In IDE,
ProjectPathHandler uses Singleton pattern (Gamma,
1995) through the ProjectPathHandlerManager class
to centralize the definition of file and project paths,

Figure 15: File management service module.

A Modularized and Reusable Architecture for an Embedded MAS IDE

1043



ensuring all operations dependent on these paths are
consistent and synchronized.

The Service module structure in IDE organizes
path, project, and file management modularly. The
ProjectFileService, ProjectService, and ProjectPath-
Handler interfaces, along with their implementations,
provide extensibility and consistency in project ele-
ment handling. This approach simplifies IDE mainte-
nance and evolution, enabling the integration of new
features without compromising the existing structure,
thus ensuring a solid foundation for IDE’s continuous
development.

5 REPRODUCIBILITY

Aiming to ensure the reproducibility of this work, the
source code and an implementation of the new archi-
tecture are available on the paper’s page8.

6 CONCLUSIONS

This work established a modular architecture for the
chonIDE codebase, enhancing its flexibility and ex-
tensibility to enable software scalability through the
reorganization of its components. Furthermore, a
folder and file structure was implemented to replace
the previous single-file project structure, promoting
interoperability with other IDEs and enabling code
versioning—features previously unattainable due to
the proprietary project file format being manipulable
only within the IDE itself. Thus, it is understood
that with the proposed changes, chonIDE is better
equipped to meet market demands, thereby reducing
software engineering challenges in the context of Em-
bedded MAS.

6.1 Future Works

As future works, the goal is to explore another aspects
of chonIDE’s adaptability to market demands: inte-
gration with Language Servers (LSP) to enable syntax
checking and highlighting, code autocompletion, and
quick assistance; the evolution of the Mind Inspector
into a comprehensive control tool for a running MAS,
allowing developers to insert and modify elements of
agent logic (beliefs, intentions, plans, etc.) through
a more interactive interface; and the implementation
of project code versioning through Git, integrated into
the IDE.

8https://papers.chon.group/ICEIS/2025/
modularizedArchChonIDE/

REFERENCES

Boissier, O., Bordini, R. H., Hubner, J., and Ricci, A.
(2020). Multi-agent oriented programming: program-
ming multi-agent systems using JaCaMo. Mit Press.

Bordini, R., Hübner, J., and Wooldridge, M. (2007). Pro-
gramming Multi-Agent Systems in AgentSpeak using
Jason. Wiley Series in Agent Technology. Wiley.

Bordini, R. H., Hübner, J. F., and Vieira, R. (2005). Jason
and the golden fleece of agent-oriented programming.
In Bordini, R. H., Dastani, M., Dix, J., and El Fal-
lah Seghrouchni, A., editors, Multi-Agent Program-
ming: Languages, Platforms and Applications, pages
3–37, Boston, MA. Springer US. DOI: 10.1007/0-
387-26350-0 1.

Corporation, O. (2024). Java Development Kit
(JDK). https://www.oracle.com/java/technologies/
javase-downloads.html.

Evans, E. (2004). Domain-Driven Design: Tackling Com-
plexity in the Heart of Software. Addison-Wesley Pro-
fessional, Boston, MA.

Fowler, M. (2002). Patterns of Enterprise Application Ar-
chitecture. Addison-Wesley.

Fowler, M. (2004). Inversion of control containers and
the dependency injection pattern. https://martinfowler.
com/articles/injection.html.

Gamma, E. (1995). Design patterns: elements of reusable
object-oriented software. Addison-Wesley.

Hübner, J. F., Sichman, J. S. a., and Boissier, O. (2002).
Moise+: towards a structural, functional, and de-
ontic model for mas organization. In Proceed-
ings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems: Part
1, AAMAS ’02, page 501–502, New York, NY,
USA. Association for Computing Machinery. DOI:
10.1145/544741.544858.

Jennings, N. R. (2001). An agent-based approach for
building complex software systems. Commun. ACM,
44(4):35–41. DOI: 10.1145/367211.367250.

Jesus, V., Lazarin, N., Pantoja, C., Manoel, F., Alves, G.,
Ramos, G., and Filho, J. V. (2022). Proposta de uma
IDE para desenvolvimento de SMA Embarcados. In
Proceedings of the 16th Workshop-School on Agents,
Environments, and Applications, pages 49–60, Porto
Alegre, RS, Brasil. SBC. https://sol.sbc.org.br/index.
php/wesaac/article/view/33425.

Lazarin, N., Pantoja, C., and Viterbo, J. (2023). Towards
a Toolkit for Teaching AI Supported by Robotic-
agents: Proposal and First Impressions. In Proceed-
ings of the 31st Workshop on Computing Education,
pages 20–29, Porto Alegre, RS, Brasil. SBC. DOI:
10.5753/wei.2023.229753.

Pantoja, C., Soares, H. D., Viterbo, J., and Seghrouchni,
A. E. F. (2018). An Architecture for the Development
of Ambient Intelligence Systems Managed by Embed-
ded Agents. In 30th International Conference on Soft-
ware Engineering and Knowledge Engineering, pages
215–220. DOI: 10.18293/SEKE2018-110.

Pantoja, C. E., Jesus, V. S. d., Lazarin, N. M., and Viterbo,
J. (2023). A Spin-off Version of Jason for IoT and

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

1044



Embedded Multi-Agent Systems. In Naldi, M. C. and
Bianchi, R. A. C., editors, Intelligent Systems, pages
382–396, Cham. Springer Nature Switzerland. DOI:
10.1007/978-3-031-45368-7 25.

Pantoja, C. E., Stabile, M. F., Lazarin, N. M., and Sich-
man, J. S. (2016). ARGO: An Extended Jason Ar-
chitecture that Facilitates Embedded Robotic Agents
Programming. In Baldoni, M., Müller, J. P., Nunes, I.,
and Zalila-Wenkstern, R., editors, Engineering Multi-
Agent Systems, pages 136–155, Cham. Springer. DOI
10.1007/978-3-319-50983-9 8.

Ricci, A., Santi, A., and Piunti, M. (2012). Action and Per-
ception in Agent Programming Languages: From Ex-
ogenous to Endogenous Environments. In Collier, R.,
Dix, J., and Novák, P., editors, Programming Multi-
Agent Systems, pages 119–138, Berlin, Heidelberg.
Springer. DOI: 10.1007/978-3-642-28939-2 7.

Siqueira, E., Ramos, G., Raboni, T., Pantoja, C., and
Lazarin, N. (2024). Análise Comparativa de um
Protótipo de IDE para Desenvolvimento de SMA Em-
barcados. In Proceedings of the 18th Workshop-
School on Agents, Environments, and Applications,
pages 85–95, Porto Alegre, RS, Brasil. SBC. https:
//sol.sbc.org.br/index.php/wesaac/article/view/33458.

Souza de Jesus, V., Mori Lazarin, N., Pantoja, C. E.,
Vaz Alves, G., Ramos Alves de Lima, G., and Viterbo,
J. (2023). An IDE to Support the Development of
Embedded Multi-Agent Systems. In Mathieu, P.,
Dignum, F., Novais, P., and De la Prieta, F., editors,
Advances in Practical Applications of Agents, Multi-
Agent Systems, and Cognitive Mimetics. The PAAMS
Collection, pages 346–358, Cham. Springer Nature
Switzerland. DOI: 10.1007/978-3-031-37616-0 29.

Tennenhouse, D. (2000). Proactive computing. Commun.
ACM, 43(5):43–50. DOI: 10.1145/332833.332837.

Wooldridge, M. (2009). An Introduction to Multiagent Sys-
tems. John Wiley & Sons, Chichester, U.K, 2nd edi-
tion.

Wooldridge, M. and Jennings, N. R. (1995). Intel-
ligent agents: theory and practice. The Knowl-
edge Engineering Review, 10(2):115–152. DOI:
10.1017/S0269888900008122.

Zambonelli, F., Jennings, N. R., and Wooldridge, M.
(2003). Developing multiagent systems: The gaia
methodology. ACM Trans. Softw. Eng. Methodol.,
12(3):317–370. DOI: 10.1145/958961.958963.

Zambonelli, F. and Van Dyke Parunak, H. (2003). Signs
of a revolution in computer science and software en-
gineering. In Petta, P., Tolksdorf, R., and Zambonelli,
F., editors, Engineering Societies in the Agents World
III, pages 13–28, Berlin, Heidelberg. Springer Berlin
Heidelberg. DOI: 10.1007/3-540-39173-8 2.

A Modularized and Reusable Architecture for an Embedded MAS IDE

1045


