
Velluscinum: A Middleware for Using Digital

Assets in Multi-Agent Systems

Nilson M. Lazarin1,2, Igor M. Coelho1, Carlos E. Pantoja1,2, and José Viterbo1

1 Institute of Computing - Fluminense Federal University (UFF),
Niterói - RJ, Brazil

2 Federal Center for Technological Education Celso Suckow da Fonseca (Cefet/RJ),
Rio de Janeiro - RJ, Brazil

{nilson.lazarin,carlos.pantoja}@cefet-rj.br, {imcoelho,viterbo}@ic.uff.br

Abstract. Distributed Ledger Technologies (DLT) characteristics can
contribute to several domains, such as Multi-agent Systems (MAS), fa-
cilitating the agreement between agents, managing trust relationships,
and distributed scenarios. Some contributions to this integration are in
the theoretical stage, and the few existing practical contributions have
limitations and low performance. This work presents a MAS approach
that can use digital assets as a factor of agreement in the relationship
between cognitive agents using the Belief-Desire-Intention model. To val-
idate the proposed methodology, we present the middleware Velluscinum
that offers new internal actions to agents. The middleware was tested by
adapting the Building-a-House classic example to cryptocurrency and
agreements mediated by a distributed ledger.

Keywords: Middleware · Multi-agents · Digital Ledger Technology.

1 Introduction

Multi-agent Systems (MAS) are systems composed of multiple agents, which can
be cognitive, through the use of the Belief-Desire-Intention (BDI) [4] model that
enables the programming of mental attitudes like beliefs, desires, and intentions.
These agents are called cognitive since they have a reasoning cycle capable of
analyzing the information perceived in the environment in which they are in-
serted, the knowledge acquired through communication with other agents, and
making self-conclusions. These agents can interact or compete to resolve a task;
in this relationship, conflicts and uncertainty can occur, so it is essential to pro-
vide mechanisms for all agents to cooperate by guaranteeing reliability in the
acquired information and used resources [23, 25].

Distributed Ledger Technologies (DLT) technologies have applications far
beyond the financial sector, and their characteristics of decentralization, security,
trust, and low cost of operation have a great capacity to contribute in various
domains [9]. They are classified as permissionless or permissioned: in the first
case, the access is unrestricted, the members can join and leave the network at
any time, and finally, each node has a read-only copy of the data; the second case



2 Lazarin et al.

provides an additional access control layer, allowing some specific operations by
authorized participants [18].

Adopting DLT technologies in MAS can facilitate the agreement between
agents, taking what is registered in the Ledger as accurate, and also can be
helpful to manage trust relationships, open MAS, and distributed scenarios.
This integration contains a great set of open challenges with great potential [6].
Whether in facilitating the execution of semi-autonomous interorganizational
business processes [11] or even allowing intelligent agents to generate economic
value for their owner [14], for example.

Many contributions that proposed the fusion of MAS and DLT are still in
the theoretical stage [6]. When performing a mapping review, we found only one
paper [16] implementing DLT in MAS using BDI agent. However, this imple-
mentation is in the environmental dimension of the MAS, making it necessary
to create an institution in the organizational dimension. In this implementation,
the agents can access only one wallet in the DLT, limiting the competitiveness
or autonomy of agents. In addition, the DLT platform used has high latency and
low performance.

Thus, this paper presents a middleware for using digital assets in the relation-
ships between cognitive agents to represent the transfer of funds, registration of
ownership of artifacts, declaration of promises or agreements, and dissemination
of knowledge. The middleware comprises several new internal actions that op-
erate in the agents’ dimension, allowing them to manipulate assets and wallets
directly in the DLT. So, the agents can create and transfer divisible and indi-
visible assets and manage digital wallets on a permissioned DLT. In addition, as
a proof of concept, a case study integrating MAS and DLT is presented. They
adapted the well-known Build-a-House example [1] for using digital assets in a
BigchainDB Network. The contribution of this work is a middleware to be inte-
grated in the JaCaMo [2] distribution, a well-known platform for agent-oriented
development.

This work is organized as follows: a theoretical basis of DLT is presented in
Section 2; an analysis of related works is presented in Section 3; in Section 4
is presents a proposal for the use of digital assets in the relationship between
intelligent agents; the case study of the integration of the well-known examples
with DLT is presented in Section 5; finally, conclusions and future work are
presented in Section 6.

2 Theoretical foundation

A DLT can be considered an append-only decentralized database because it
provides a storage mechanism. However, compared with a traditional database,
its performance is much lower because it has a low download rate and a high
latency [13]. On the other hand, there are several models of permissioned DLTs,
but they do not have a significant difference in performance compared to a
permissionless [8, 22].



Velluscinum: A Middleware for Using Digital Assets in Multi-Agent Systems 3

New approaches based on distributed databases have been used to improve
the performance of permissioned DLT. In this case, the properties of distributed
databases are combined with blockchain networks, are thus security-oriented,
and adopt transaction-based replication [21, 17, 10]. When considering the num-
ber of transactions that a DLT can successfully execute per second (Transactions
Per Second – TPS ), some benchmark works carried out demonstrate that: DLT
permissionless (e.g., Bitcoin or Ethereum) ranges between 3.45 and 4.69 TPS [24,
15]; DLT permissioned (e.g., HyperLedger Fabric) vary between 4.28 and 10.51
TPS [7, 15]; DLT permissioned distribution database-based (e.g., BigchainDB)
varies between 50.60 and 175 TPS [7, 10].

The performance of DLT can be a limiting factor for their adoption in MAS
since the delay in including a new block in the network can affect the behavior
of intelligent systems. In addition, the cost of carrying out a transaction on some
permissionless DLT can be another restrictive factor for wide use. These issues
led to the choice of using BigchainDB, as it is a high-performance permissioned
network. Rather than trying to improve the performance of DLT, BigChainDB
adds the characteristics of a blockchain to a distributed database. In this way,
it has unified the characteristics of low latency, high transfer rate, high storage
capacity, and a query language of a distributed database, with the characteris-
tics of decentralization, Byzantine fault tolerance, immutability, and creation or
exchange of digital assets [13].

BigchainDB structures the data as an owner-controlled asset and only allows
two types of transactions that are made up of the following fields [13]: ASSET
is immutable information that represents a register in the DLT; METADATA
is additional information that can be updated with each new transaction; IN-
PUT specifies which key an asset previously belonged to and provides proof
that the conditions required to transfer ownership of that asset have been met;
OUTPUT specifies the conditions that need to be met to change ownership of
a specific asset; TRANSACTION-ID is a digest that identifies the transaction.
It is computed considering all transaction fields.

There is no previous owner in a CREATE transaction, so the INPUT field
specifies the key registering the asset. Furthermore, in the OUTPUT field of this
transaction, a positive number called AMOUNT is defined. If AMOUNT = 1,
the asset is indivisible, thus representing a non-fungible token. IfAMOUNT > 1,
this asset is divisible, thus representing a token and how many instances there
are. In a TRANSFER transaction, the INPUT contains proof that the user can
transfer or update that asset. In practical terms, this means that a user states
which asset is to be transferred with the INPUT field and demonstrates that it
is authorized to transfer this asset [13].

3 Related Works

A mapping review was conducted by looking for related works integrating BDI
agents with DLT. This research was made in three phases. The first phase used
the following search string ((“DLT” OR “Distributed Ledger Technologies” OR



4 Lazarin et al.

“Blockchain”) AND (“BDI” OR “belief-desire-intention”) AND (“multi-agent
oriented programming” OR “Jason” OR “Jacamo”)) in GoogleScholar found 97
works. In the second phase, a refinement was carried out by reading the paper’s
titles and abstracts. Twenty works were classified involving DLT and MAS. In
the third stage, the complete reading of the papers. Below are the only three
papers that involved DLT and MAS practical applications.

Calvaresi et al. [6] presents an integration between the MAS and the Hy-
perledger Fabric. Via a smart contract, the reputation management of agents
of a MAS is carried out. In the proposed model, prior registration is required
to interact with other agents in the system or operate the ledger, making the
use of a third membership service mandatory. Furthermore, an agent cannot
create an asset in the ledger, but only execute a pre-existing contract. Finally,
the proposed system does not use BDI agents.

Papi et al. [16] presents an integration model between JaCaMo and Ethereum.
Creating a centralized entity and standards allows BDI agents to request the ex-
ecution of a smart contract on the blockchain. A proof of concept is presented,
where agents negotiate, hire, and pay for services from other agents through the
centralizing entity. However, it does not allow each BDI agent to own a wallet.
In addition, it is mandatory using an artificial institution (following the Situated
Artificial Institution [5] model) that is recognized by all agents and other entities
in the system because the notion of money transfer depends on the interpretation
of each agent. Finally, the delay in effecting transactions is another limitation.

Minarsch et al. [14] presents a framework for Autonomous Economic Agents
(AEA) to operate on Ethereum on behalf of an owner, with limited or no inter-
ference from that owner entity and whose objective is to generate economic value
for its owner. Allows developers to distribute agents as finished products to end
users, reducing barriers to widespread MAS adoption. However, AEA uses an
abstraction based on behaviors and handler code. It does not have BDI-based
fundamentals and does not support content based on ontology, agent persistence,
and agent mobility services.

This work presents a middleware for integrating MAS with BigChainDB, a
distributed database with blockchain characteristics. Unlike Calvaresi et al., this
paper eliminates the need for a certifying authority. Each agent can generate a
wallet to interact with the DLT. Unlike Papi et al., creating a virtual institution
is unnecessary, and each agent can manage digital assets directly via new internal
actions provided by the middleware. Finally, unlike Minarsch et al., this work
allows BDI agents to generate economic value for their owners.

4 Proposed middleware

This paper presents some approaches for using divisible and indivisible assets as
concordance factors in intelligent agents’ relationships. New internal actions are
proposed to integrate BDI agents with a DLT. In addition, as a proof of concept,
a middleware was developed, enabling agents to create and transfer assets and
to manage digital wallets in the permissioned blockchain BigchainDB.



Velluscinum: A Middleware for Using Digital Assets in Multi-Agent Systems 5

4.1 Indivisible assets supporting the BDI agents’ relationship

Agents can create and transfer indivisible assets that are unique and immutable
records in the DLT, cryptographically signed and protected by crypto-conditions.
With this, they can represent ownership registrations and transfers of artifacts,
publicize beliefs and plans, or even record promises and commitments. Below
are some possible approaches for using indivisible assets by intelligent agents.

Indivisible asset such as property record: Artifacts provide some function
or service for agents to achieve their goals. An artifact can be a computational
device that populates the MAS’s environment dimension [20] or a physical device
capable of acting or perceiving the real world [12]. An artifact can be used
individually or collectively by agents. So, DLT can add a layer of ownership
to artifacts, making it easier to implement access control and security. Using
indivisible assets as a property record, the artifact itself can use the DLT as a
reliable basis for defining permissions, always consulting the last transaction of
the asset.

Figure 1 presents an example where agent Bob registers an asset in the
DLT, representing an artifact. Subsequently, it transfers ownership to agent Al-
ice through a transaction. Then, agent Alice transfers to agent Eve, the current
owner. The asset’s immutable characteristics are recorded at creation: the arti-
fact name and a serial number. The asset has metadata that is added to each
new transaction.

Fig. 1: Using indivisible asset such as property record.

When creating the asset (1), the metadata represents that the artifact can
be observed by all agents and used only by agent Bob. When the asset was
transferred to agent Alice (2), the artifact could only be observed and used by
agent Alice. Finally, in the last transaction (3), the artifact can be observed by
all agents and used only by agent Eve, the current owner of the artifact.

Indivisible asset such as promise or agreement: By analyzing the results
of interactions between agents or information received from other agents, trust



6 Lazarin et al.

models seek to guide how, when, and with which agents it is safe to interact [19].
DLT technologies can add a layer of trust to the relationship between intelligent
agents. In this case, a history of an agent’s reputation can is built through an
asset. Any agent that receives the asset will be able to analyze the history of
agreements or promises made by the agent.

Figure 2 presents an example of agent bob committing to a particular task.
After creating the asset (1) representing the commitment, the agent transfers
(2) it to agent alice. When agent Bob fulfills his commitment and agent Alice is
satisfied, he returns the asset (3) to Bob. Later, agent bob promised to eve can
assume the same commitment (4).

Fig. 2: Using invisible asset such as promise.

4.2 Divisible assets to support the agents’ relationship

A divisible asset can represent a cryptocurrency in DLT, so that can be created
several tokens. All divisible assets are created in a wallet, are cryptographically
signed, and initially, the wallet concentrates all the asset units, being able to
transfer units of this asset to other wallets [13]. Intelligent agents can use divisible
assets to trade with other agents inside or outside the MAS. Figure 3 presents

Fig. 3: Using divisible assets to support the agents’ relationship



Velluscinum: A Middleware for Using Digital Assets in Multi-Agent Systems 7

an example of a transaction involving divisible assets. Agent Bob creates 100
units of the asset BobCoin (1) and performs two transfers: in the first (2), 25
Bobcoins are sent to agent alice; in the second (3), another 25 BobCoins are
sent to agent eve. Agent Alice, in turn, transfers 5 Bobcoins to agent eve (4)
and another 5 Bobcoins to agent charlie (5). Likewise, agent eve transfers 10
Bobcoins to agent charlie (6). Finally, what remained: agent bob has 50; agent
alice has 15; agent eve has 20; agent charle has 15; totaling the 100 Bobcoins
created and distributed by DLT.

4.3 Stamping a transaction.

In a negotiation scenario between agents, a producer, and a consumer, the con-
sumer agent transfers an asset to the producer agent, requesting a specific service.
In turn, the producing agent verifies the transaction’s validity on the DLT. Once
the transaction is valid, the agent executes the service. In a typical scenario, the
producer agent should store in its belief base or, worst case, in a database where
a specific request has already fulfilled a specific transaction. It is necessary to
prevent a malicious agent from requesting a service, using the same transaction
several times.

A transaction is considered open if the OUTPUT pointer does not point
to the INPUT pointer of the next transaction. It represents in this way that
the transaction has not yet been spent. In addition to implementing internal
actions to operate in DLT from the agents’ dimension, this paper also presents
the concept of stamping a transaction.

Definition 1 (Stamp Transaction). Stamping a transaction is a self-transfer
and unification process. Self-transfer, therefore, the units received from a divis-
ible asset are transferred to itself, spending the received transaction (filling the
OUTPUT pointer with the address of its wallet). Unification because this process
joins the units from the received transaction with those already in the wallet. A
transaction with two or more INPUT pointers and a single OUTPUT pointer is
generated in this process.

4.4 Middleware Velluscinum

Middleware Velluscinum3 extends the jason-lang [3] through integration with
BigchainDB [13], providing new internal actions to enable the use of digital
assets to support the relationship between intelligent agents. Figure 4 presents
the integration of two MAS with a DLT. The actions offered by the middleware
are available directly to the dimension of the agents that populate the MAS.
They bridge the Multi-agent Oriented Programming (MAOP) paradigm [1] and
the BigchainDB communication driver [13].

In this way, intelligent agents can create or transfer digital assets, stamp
transactions or manage their wallets on the DLT directly from their dimension.

3 https://velluscinum.chon.group/



8 Lazarin et al.

Fig. 4: Proposed middleware approach

The built-in internal actions provided by the middleware are described below:

– .buildWallet(w) - generates a digital wallet and returns the belief +w(P,Q);
– .deployNFT(S,P,Q,I,M,b) - registers an asset and returns the belief +b(A);
– .transferNFT(S,P,Q,A,R,M,b) - transfer an asset and returns +b(T);
– .deployToken(S,P,Q,I,V,b) - creates V units from an asset, returns +b(C);
– .transferToken(S,P,Q,C,R,V,b) - transfer V units of C and returns +b(T);
– .stampTransaction(S,P,Q,T) - stamps a transaction (T);
– .tokenBalance(S,P,Q,C,q) - check the wallet Q and return +q(C,V).

Where:

– b is a belief that represents a result of an operation in DLT;
– w is a belief that represents an agent’s wallet;
– q is a belief that represents the balance of C in the agent’s wallet.
– A is a literal that represents a divisible asset;
– C is a literal that represents a indivisible asset;
– P e Q are literals that represent the agent’s key pair;
– R is a literal that represents the public key of a recipient agent;
– S is a literal that represents the address of a DLT node;
– T is a literal that represents a transaction performed in the DTL;
– V is a literal that represents the number of parts of a C;
– I is a key-value array that represents the immutable data of an asset;
– M is a key-value array representing asset or transaction metadata;

5 Case Study

To validate the proposed approach, we present the adaptation of a well-known
example of relationships between intelligent agents for the use of digital assets.
The Building-a-House example [1] presents a multi-agent system scenario with
an interorganizational workflow for building a house on the land of a contracting
agent. The agent hires builder agents during an auction to achieve this overall
objective. Furthermore, coordination is needed to carry out the tasks related to
the construction of the property.

The original example uses artifacts to manage the auction for each stage of
construction. In this integration, we use the approach of indivisible assets as



Velluscinum: A Middleware for Using Digital Assets in Multi-Agent Systems 9

an agreement. Thus, before creating artifacts, added plans to deploy an asset
for each stage of construction It represents a contract that is transferred to the
winner before the execution of the task, and returned to the owner after the
payment confirmation.

Figure 5 presents the necessary adaptations for all agents and the specific
adaptations for the owner agent to integrate the example with the proposed
approach. The adaptations are detailed below: Before the execution of the MAS,
a digital currency (JacamoCoin) and a wallet for the owner agent are created. In
addition, currency units are transferred to the owner’s wallet; In the source code
common to all agents in the system, a belief is added containing JacamoCoin’s
ASSET-ID and the address of a DLT node (common.asl, lines 2-3). This way,
when starting the MAS, the agent already has a balance, and all agents agree
with the cryptocurrency in that MAS; A belief is added to the owner agent,
containing its wallet’s private and public key (giacomo.asl, lines 2-3); In the
creation plan of the artifact responsible for the auction were added actions to
generate an asset representing a contract referring to the task to be auctioned
(giacomo.asl, lines 50-56); In the auction result display plan was added actions
to request the information necessary to transfer the digital asset to the winner
(giacomo.asl, lines 71-75); In the contract execution plan, was added information
about the digital asset in the message sent to the winners (giacomo.asl, lines
126-129); A plan responsible for carrying out the transfer of the digital asset
that represents the contract between the owner and the contractor was added
(giacomo.asl, lines 144-152); Finally, a plan to carry out the payment of the task
after its execution by the contractor was added (giacomo.asl, lines 155-164).

The owner agent initiates the execution phase of the house construction
project by requesting the winners to carry out the tasks. At this stage, orga-
nizations verify the validity of the asset representing the contract in the DLT.
This action is performed through the transaction stamp. Once the contract is
confirmed, the company starts executing the task. Upon completion of the execu-
tion, as defined in the contract, the company requests payment in JacamoCoins
(digital currency accepted in the SMA - divisible assets approach to support the
relationship between agents). Finally, when the agent informs about the pay-
ment of the task, the company confirms receipt (transaction stamp approach).
If everything is correct, the company returns the asset representing the contract
to the owner.

Figure 6 presents the adaptations necessary for all organizations that enable
the integration of the example with the proposed approach. The adaptations are
detailed below: An action was added to request payment after executing each
auction task (org goals.asl, lines 5;8;10;12;15; 17;19;21); The necessary informa-
tion for triggering the contract execution plan has been changed. In addition,
before executing the tasks, a plan for validating the contract with the DLT is
activated (org code.asl, lines 13 and 15); A plan was added to provide for the
creation of a virtual company wallet, along with the DLT (org code.asl, lines
40-45); A plan was added to note in the agent’s mind the ASSET-ID of the
contract he won in the auction and also to inform the owner which wallet will



10 Lazarin et al.

Fig. 5: Generic and specific changes to the giacomo agent to adhere to the
Building-a-House[1] example with the proposal of digital assets as support for
the relationship between intelligent agents.

Fig. 6: Generic changes were needed by organizations to adhere to the Building-a-
House [1] example with the proposal of digital assets to support the relationship
between intelligent agents.

receive the contract (org code.asl, lines 47-51); A plan was added with the nec-
essary actions to validate contracts with the DLT (org code.asl, lines 53-57); A
plan has been added to make it possible to request payment after executing a



Velluscinum: A Middleware for Using Digital Assets in Multi-Agent Systems 11

task (org code.asl, lines 59-64); Finally, a plan was added to validate a payment
and transfer ownership of the contract to the owner (org code.asl, lines 66-72).

6 Conclusion

This paper presents an approach for using digital assets in the relationships be-
tween cognitive agents, enabling the representation of the transfer of funds, reg-
istration of property, declaration of promises, and dissemination of knowledge.
Integration of a well-known example of MAS with DLT was presented using
middleware for the agents’ dimension. In addition, it was possible to: evaluate
the functioning of the system and verify that each agent can sign its trans-
action through its asymmetric key pair; use the DLT as an open and reliable
basis to feed agents’ beliefs; and enable the manipulation of assets directly by
the agents. Future works can analyze the need for new internal actions for the
agent dimension, more complex scenarios involving transactions between dif-
ferent multi-agent systems, and the possibilities and implications of a specific
permissive DLT for intelligent agents.

References

1. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent ori-
ented programming with jacamo. Science of Computer Programming 78(6), 747–
761 (2013). https://doi.org/10.1016/j.scico.2011.10.004

2. Boissier, O., Hübner, J.F., Ricci, A.: The JaCaMo Framework, pp. 125–151.
Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-
319-33570-4 7

3. Bordini, R., Hübner, J., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak using Jason. Wiley Series in Agent Technology, Wiley (2007)

4. Bratman, M.: Intention, Plans, and Practical Reason. Cambridge: Cambridge, MA:
Harvard University Press (1987)

5. de Brito, M., Hübner, J.F., Boissier, O.: Situated artificial institutions: stability,
consistency, and flexibility in the regulation of agent societies. Autonomous Agents
and Multi-Agent Systems 32(2), 219–251 (2018). https://doi.org/10.1007/s10458-
017-9379-3

6. Calvaresi, D., Calbimonte, J.P., Dubovitskaya, A., Mattioli, V., Piguet,
J.G., Schumacher, M.: The good, the bad, and the ethical implications
of bridging blockchain and multi-agent systems. Information 10(12) (2019).
https://doi.org/10.3390/info10120363

7. Contreras, A.F.: Benchmarking of blockchain technologies used in a decentral-
ized data marketplace. Grado en Ingenieŕıa Informática, E.T.S de Ingenieros In-
formáticos (UPM), Madrid, España (Jun 2019), https://oa.upm.es/55775/

8. Dabbagh, M., Choo, K.K.R., Beheshti, A., Tahir, M., Safa, N.S.: A sur-
vey of empirical performance evaluation of permissioned blockchain plat-
forms: Challenges and opportunities. Computers Security 100, 102078 (2021).
https://doi.org/10.1016/j.cose.2020.102078

9. El Ioini, N., Pahl, C.: A review of distributed ledger technologies. In: On the Move
to Meaningful Internet Systems. OTM 2018 Conferences. pp. 277–288. Springer
International Publishing, Cham (2018)



12 Lazarin et al.

10. Ge, Z., Loghin, D., Ooi, B.C., Ruan, P., Wang, T.: Hybrid blockchain database
systems: Design and performance. Proc. VLDB Endow. 15(5), 1092–1104 (may
2022). https://doi.org/10.14778/3510397.3510406

11. Kampik, T., Najjar, A.: Simulating, off-chain and on-chain: Agent-based sim-
ulations in cross-organizational business processes. Information 11(1) (2020).
https://doi.org/10.3390/info11010034

12. Manoel, F., Pantoja, C.E., Samyn, L., de Jesus, V.S.: Physical Artifacts for Agents
in a Cyber-Physical System: A Case Study in Oil & Gas Scenario (EEAS). In: The
32nd International Conference on Software Engineering and Knowledge Engineer-
ing, SEKE 2020. pp. 55–60. KSI Research Inc. (2020)

13. McConaghy, T., Marques, R., Müller, A., De Jonghe, D., McConaghy, T., Mc-
Mullen, G., Henderson, R., Bellemare, S., Granzotto, A.: Bigchaindb: a scalable
blockchain database. white paper, BigChainDB (2016)

14. Minarsch, D., Favorito, M., Hosseini, S.A., Turchenkov, Y., Ward, J.: Autonomous
economic agent framework. In: Alechina, N., Baldoni, M., Logan, B. (eds.) En-
gineering Multi-Agent Systems. pp. 237–253. Springer International Publishing,
Cham (2022). https://doi.org/10.1007/978-3-030-97457-2 14

15. Nasir, Q., Qasse, I.A., Abu Talib, M., Nassif, A.B.: Performance Analysis of Hy-
perledger Fabric Platforms. Security and Communication Networks 2018, 1–14
(2018). https://doi.org/10.1155/2018/3976093

16. Papi, F.G., Hübner, J.F., de Brito, M.: A blockchain integration to support trans-
actions of assets in multi-agent systems. Engineering Applications of Artificial In-
telligence 107, 104534 (2022). https://doi.org/10.1016/j.engappai.2021.104534

17. Podgorelec, B., Turkanović, M., Šestak, M.: A brief review of database solutions
used within blockchain platforms. In: Blockchain and Applications. pp. 121–130.
Springer International Publishing, Cham (2020)

18. Rajasekaran, A.S., Azees, M., Al-Turjman, F.: A comprehensive survey on
blockchain technology. Sustainable Energy Technologies and Assessments 52,
102039 (2022). https://doi.org/10.1016/j.seta.2022.102039

19. Ramchurn, S.D., Huynh, D., Jennings, N.R.: Trust in multi-agent systems. The
Knowledge Engineering Review 19(1), 1–25 (2004)

20. Ricci, A., Viroli, M., Omicini, A.: Programming mas with artifacts. In: Bordini,
R.H., Dastani, M.M., Dix, J., El Fallah Seghrouchni, A. (eds.) Programming Multi-
Agent Systems. pp. 206–221. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

21. Ruan, P., Dinh, T.T.A., Loghin, D., Zhang, M., Chen, G., Lin, Q., Ooi, B.C.:
Blockchains vs. distributed databases: Dichotomy and fusion. In: Proceedings of the
2021 International Conference on Management of Data. p. 1504–1517. SIGMOD
’21, New York, NY, USA (2021). https://doi.org/10.1145/3448016.3452789

22. Shalaby, S., Abdellatif, A.A., Al-Ali, A., Mohamed, A., Erbad, A., Guizani, M.:
Performance Evaluation of Hyperledger Fabric. In: 2020 IEEE International Con-
ference on Informatics, IoT, and Enabling Technologies (ICIoT). pp. 608–613.
IEEE, Doha, Qatar (Feb 2020). https://doi.org/10.1109/ICIoT48696.2020.9089614

23. Sichman, J.S., Demazeau, Y., Boissier, O.: When can knowledge-based systems be
called agents. In: Simpósio Brasileiro de Inteligência Artificial. vol. 9, pp. 172–185.
SBC, Rio de Janeiro (1992)

24. Tikhomirov, S.: Ethereum: State of knowledge and research perspectives. In: Imine,
A., Fernandez, J.M., Marion, J.Y., Logrippo, L., Garcia-Alfaro, J. (eds.) Founda-
tions and Practice of Security. pp. 206–221. Springer International Publishing,
Cham (2018). https://doi.org/10.1007/978-3-319-75650-9 14

25. Wooldridge, M.J.: Reasoning about rational agents. MIT press (2000)

View publication stats


