ARGO: An Extended Jason Architecture that
Facilitates Embedded Robotic Agents
Programming

Carlos Eduardo Pantoja (2)!'*, Marcio Fernando Stabile Junior?, Nilson Mori
Lazarin', and Jaime Sim&o Sichman?

! Centro Federal de Educagao Tecnolégica (CEFET/RJ), Brazil
{pantoja, nilson.lazarin}@cefet-rj.br
2 Instituto de Matemética e Estatistica, Universidade de Sdo Paulo, Brazil
mstabile@ime.usp.br
3 Escola Politécnica, Universidade de Sao Paulo, Brazil
jaime.sichman@poli.usp.br
4 Universidade Federal Fluminense, Brazil

Abstract. This paper presents ARGO, a customized Jason architecture
for programming embedded robotic agents using the Javino middleware
and perception filters. Jason is a well known agent-oriented programming
language that relies on the Belief-Desire-Intention model and implements
an AgentSpeak interpreter in Java. Javino is a middleware that enables
automated design of embedded agents using Jason and it is aimed to
be used in the robotics domain. However, when the number of percep-
tions increases, it may occur a bottleneck in the agent’s reasoning cycle
since an event is generated for each single perception processed. A pos-
sible solution to this problem is to apply perception filters, that reduce
the processing cost. Consequently, it is expected that the agent may
deliberate within a specific time limit. In order to evaluate ARGO’s per-
formance, we present some experiments using a ground vehicle platform
in a real-time collision scenario. We show that in certain cases the use of
perception filters is able to prevent collisions effectively.

1 Introduction

Agents are autonomous and pro-active entities situated in an environment and
are able to reason about what goal to achieve, based on its perceptions about
the world [22]. In robotics, an agent is a physical entity composed of hard-
ware, containing sensors and actuators, and software that is responsible for its
reasoning. The Belief-Desire-Intention model (BDI) [3] is a cognitive approach
for reasoning based on how information from the environment and the goals an
agent has can activate predefined plans in order to try to achieve these goals. Ja-
son [2] is an Agent-Oriented Programming Language (AOPL) that implements
an AgentSpeak interpreter in Java, adopting the BDI cognitive architecture.
However, programming robotic agents using Jason is a difficult task because a

bottleneck can occur in the agent’s reasoning cycle when the robot updates its
belief base with perceptual information.

Javino [14] is a middleware that enables automated design of embedded
agents using Jason. It allows agents to communicate with microcontrollers in
hardware devices, e.g. Arduino. Both Javino and Jason can run embedded in a
single-board computer such as Raspberry Pi (connected with n devices). How-
ever, when using several sensors, the agent’s belief base generates events for each
perception, which may compromise the robot execution time. In [20], perception
filters were used to minimize the cost effects of processing all perceptions in sim-
ulation systems using Jason. The results showed that filters are able to improve
agent’s performance significantly.

Thus, in this paper, we present a customized Jason architecture for program-
ming embedded robotic agents named ARGO!, which uses a layered robot ar-
chitecture separating the hardware from the reasoning agency. In ARGO, Javino
enables processing data coming from sensors as perceptions in ARGO’s agent
reasoning cycle. Then, one can restrict the list of perceptions delivered by Javino
based on filters designed by the agent’s programmer. The main contribution of
ARGO is to enable the use of perception filters for programming robotic agents,
which reduces the cost of processing perceptions in BDI. Moreover, ARGO al-
lows an agent to decide when to start or to stop perceiving, to fix the interval
between each perception and to control the perceptual behavior by using Jason
internal actions to filter perceptions at runtime.

In order to evaluate ARGO’s performance, we also present some experiments
using a ground vehicle platform in a real-time collision scenario constructed. We
applied the experimental design methodology described by [12] to test and to
statistically verify that in certain cases the use of perception filters reduces BDI
processing time, thus preventing collisions effectively.

The rest of the paper is structured as follows. We briefly present in section
2 the Jason framework and the Javino middleware, and then explain how we
can construct embedded robotic agents with these frameworks. In the sequence,
perception filters are discussed in section 3. We then present ARGO architecture
and its implementation in section 4. Our experiments, including the case study,
the experimental design and our results, are presented in section 5. In section
6, we discuss related work. Finally, in section 7 we present our conclusions and
further research.

2 Programming BDI agents

2.1 Jason

Jason [2] is an interpreter for an extended version of AgentSpeak [17], which is
an abstract AOPL based on a restricted first-order language with events and
actions. Created to allow the specification of BDI agents, Jason implements the

! Download available at http://argo-for-jason.sourceforge.net.

operational semantics of AgentSpeak and provides a platform for the develop-
ment of multi-agent systems.

A Jason agent operates by means of a reasoning cycle that is analogous to
the BDI decision loop [2]. First, the agent receives a list of literals representing
the current state of the environment. Then, the belief base is updated based
on the perceptions received. Each change in the belief base generates an event
that is added to a list to be used in a posterior step. The interpreter checks for
messages that might have been delivered to the agent’s mailbox. These messages
go through a selection process to determine whether they can be accepted by the
agent or not. After that, one of the generated events is chosen to be dealt with
and when it is selected, all the plans related to that event are selected. From these
plans, a new selection is made to separate which of them can be executed given
the current state of the environment. If more than one plan can be executed, a
function selects which one will be executed. If the agent has many different foci
of attention, a function chooses one intention among those for execution. The
final step is to execute the first non-executed action from the selected intention.

2.2 Javino

Javino is a library for both hardware and software that implements a protocol
for exchanging messages between the low-level hardware (microcontrollers) and
the high-level software (programming language) with error detection over serial
communication [14]. There are some communicating libraries in the literature,
such as RxTx Library and JavaComm, based on serial ports. However, these li-
braries do not provide error detection and they use byte-to-byte communication.
In both cases, the programmer needs to implement a message controller on the
hardware layer in order to avoid losses.

The format of a message used in a communication by Javino is composed of
3 fields: preamble, size and message content. The preamble (2 bytes) identifies
the beginning of a message that arrived through a serial port. The size field (1
byte) is calculated before any transmission informing the size of the message.
The field message content (up to 255 bytes) carries the message to be sent.

Both the preamble and size fields identify errors in case of loss or collision
of information during the message transmission. When a message arrives on
the serial port, the receiver (either software-side or hardware-side) verifies the
preamble. If it is correct, the receiver then counts the size of the message content
field and compares it with the value of size field: if they don’t match, the message
is discarded. In the case of incomplete messages, the receiver also discards the
message. Javino provides three different operation modes:

— the Send Mode assumes a simplex message transmission by software to hard-
ware. It uses the sendCommand(port, msg) method to send a message to the
hardware-side. This method returns a boolean value which gives a feedback
about the successful transmission to the microcontroller. This feedback is
necessary because the port serial can be locked by other concurrent trans-
missions. The software-side do not wait for answers from the hardware;

— the Request Mode assumes a half-duplex transmission between software to
hardware, where the hardware sends an answer message. It uses the request-
Data(port, msg) method, that sends a message to the hardware-side through
a serial port and returns a boolean value which checks if there is any answer
sent by the hardware-side. The user is supposed to implement an answer
message in the hardware-side using the availableMsg() method, that verifies
if it exists a valid message from software-side, the getMsg() method, that
gets the message sent by software-side and the sendMsg(msg) method, that
sends a message to software-side;

— the Listen Mode assumes a simplex transmission by hardware to software. It
uses the listenHardware(port) method to check if there is any message sent
by the hardware-side. The Request and Listen modes get messages from
hardware using the getData() method.

The Javino’s protocol aims to be multi-platform and can be implemented
using any programming language. The hardware-side library may be used in
microcontrollers such as ATMEGA, PIC or Intel families. The software-side li-
brary may be coded in Java or in another programming language. In [14], it
was developed a Java library for the software-side and an Arduino library for
hardware-side. In this case, Javino requires both Python and pySerial installed
to manage the serial port of an operational system.

2.3 Embedding robotic agents

Some previous research have tried to integrate robotic reasoning into hardware
by using BDI agents. In [9], a framework was presented to provide a way of pro-
gramming agents using AgentSpeak in Unmanned Aerial Vehicle in a simulator.
The authors in [4] proposed an aquatic robot which uses Arduino together with
BeagleBoard who could move from point-to-point deviating from obstacles. How-
ever, the reasoning was centralized on a computer using a Wi-Fi communication
with the robot. All the decisions were sent to BeagleBoard and retransmitted,
by serial communication, to Arduino, which held sensors and actuators. An-
other work published in [1] presented a grounded vehicle, which used Arduino
and Jason to control sensors and actuators using a Java library for communica-
tion between the hardware and the Jason’s environment. However, the agent’s
reasoning was still running on the computer. The messages to the hardware-
side were sent from an Arduino connected to a USB port computer to another
Arduino embedded on the robot using radio transmitters.

The work in [19] showed that it was possible to use BDI agents on embedded
systems employing single-board computers. However, it was not presented an
infrastructure to integrate BDI agents in a robot. Therefore, they simulated the
environment on a computer to execute the decisions taken by the BDI agent.

Finally, a robotic agent platform using both Javino and Jason framework
was presented in [14], which was an improvement of the platform presented in
[1]. The authors used Raspberry Pi and Arduino together to provide a fully em-
bedded BDI agent reasoning on a robot. In this case, Javino was integrated into

the agent’s simulated environment and the agent used a Jason external action to
request the perceptions and a Jason internal action to control the actuators. In
this architecture, the agent is responsible for controlling both sensors and actu-
ators that are connected to the Arduino board and it is embedded in Raspberry
Pi. The Arduino boards are connected to the USB ports of Raspberry Pi, thus,
the agents use Javino to get perceptions from sensors and act with the actua-
tors plugged in Arduino. The architecture worked in embedded robotic agents.
However, according to the authors, when using too many sensors or plans in
Jason code the agent’s reasoning suffered a delay due to the cost of processing
perceptions in Jason. We believe that using filters to overcome this issue could
reduce the time employed in perceptions processing in BDI.

3 Perception filters

3.1 Filtering perceptions

Filtering perceptions is a widely discussed topic in MAS and Robotics. Some
works try to provide an agent vision mechanism, which limits the agent range
of vision simulating the human eye behavior such as [13]. In classical robotics,
Kalman filters are often used to provide robot vision, playing an important role
in the development of robotic platforms [5].

In [13], the authors present a technique for perceiving objects using Multi-
agent Based Simulation (MABS), when agents are situated in open environ-
ments. The agents do not have access to all perceptions available in the simu-
lated system. Adversely, they only have access to partial information about the
environment determined by their vision sensor range area (modeled as a cone
like the human eyes range of view). So, an agent can perceive only what is within
the cone area in front of it and its decisions are based on what it can percept in
the simulated system. The agent vision algorithm eliminates unseen items that
are not in the sensor area and detects visually obstructed objects (objects that
are completely behind another object). The algorithm verifies if an object is too
far from the agent position: if this distance is less than a pre-defined range, the
object is perceived, otherwise, it is not processed as a perception. The algorithm
then verifies if part of an object is within the vision cone. In this case, the object
is perceived. Finally, the algorithm verifies if the object is witinh the agent’s vi-
sion cone and it is not obstructed to be perceived. If it is obstructed, the object
is not perceived. The algorithm has as an input the environment’s objects, and
it returns the ones perceived by the agent. The work is specific for MABS where
all the objects are pre-defined in the simulated system. So, if it is desirable to
extend the solution to a real robotic domain, one needs to identify objects in the
real world using a camera. The camera image can be considered as the agent’s
vision sensor. However, in order to use thise mechanism coupled with a BDI
agent, like Jason, it would be necessary to transform the objects perceptions in
Jasons beliefs.

Kalman filters variants are used for many problems in the robotic domain
such as robot controlling, object tracking, data estimation and prediction, simul-

taneous localization and mapping (SLAM), visual navigation, among others. In
robot vision for object detection and tracking, a Kalman Filter can be used to
identify an object and track it based on a series of images, for instance captured
from a camera. Path following can be obtained in a static road segment detecting
the distance and the angle between the robot and a line using Kalman filters
[5]. Since Kalman filters are based on mathematical approaches, they could also
be used along with Jason in internal actions or in Jason’s environment. In the
same way, the objects perceived in the environment have to be transformed into
Jason’s beliefs.

3.2 Perception filters in Jason

In order to identify the critical points for performance in the Jason reasoning
cycle, the work in [20] used a profiling tool to analyze a piece of Jason code.
By measuring memory and CPU usage, the authors verified that two sections of
the code were more time-consuming: the Belief Update Function (BUF) and the
method responsible for the unification of variables in the plans and rules. These
two methods generated a bottleneck, and depending on the specification of the
agent, those methods could take up to 99% of reasoning time.

Given that Jason’s default implementation assumes that everything that an
agent can perceive in the environment will be part of its perception list, they
proposed the inclusion of a perception filter between the perceive function and
the update of beliefs before starting the reasoning cycle. This filter is responsible
for analyzing the perception list received and for removing from the list those
literals that are not interesting for the agent. This is done through filters de-
fined by the agent designer which are described in XML format files and define
restrictions on the predicate, variables and annotations of the beliefs.

Let us suppose a robotic agent that represents his beliefs about the environ-
ment by predicates like p(d, v), where predicate p identifies the sensor, d the side
of the robot where the sensor is located and v the value acquired by perception.
An example of such a perception is shown in Figure 1.

temperature (right ,36)
temperature (back,38)
light (left ,143)
distance (front ,227)
distance (right ,30)

U W N =

Fig. 1. Example of perception list represented as beliefs.

An example of filter that is used in the experiments section 5.1 is shown
in Figure 2. This filter would remove all the perceptions originated from the
temperature and light sensors and would also remove the perceptions from the
distance sensors that are not in the front of the robot.

<?7xml version="1.0"7>
<PerceptionFilter>
<filter>
<predicate>temperature</predicate>
</filter>
<filter>
<predicate>light</predicate>
</filter>
<filter>
10 <predicate>distance</predicate>
11 <parameter operator="NE" id="0">front
12 </parameter >
13 </filter>
14 </PerceptionFilter>

OO U WN =

Fig. 2. Example of perception filter.

Since the agent’s intentions may change, the perceptions that are relevant
for the agent may also change. To reflect these changes, a new Jason internal
action called change_filter was also proposed in [20]. This action receives as a
parameter the name of an XML file with the specific rules for the perceptions,
and sets it as the current filter so that in the next reasoning cycle, the agent
receives perceptions according to its new interests.

4 ARGO

4.1 Overview of a Robot’s Architecture using Javino

A robotic agent is an embedded system where software and hardware components
are integrated to provide sensing and operating abilities in real-time environ-
ments. For this, it is necessary to employ an architecture capable of facilitating
the robot construction and programming. Hence, we propose an architecture for
programming robotic agents where it is possible to design the robot platform
independently from the reasoning agency, and then to integrate them using a
protocol for serial communication.

The robot platform must be composed of sensors and actuators coupled to
microcontrollers, where all the desired actions that the robot can perform in
the environment and the percepts it can capture from sensors are programmed.
In this case, our architecture translates raw data into a format for high-level
programming language in the firmware, resulting in a performance gain for the
agent’s reasoning. Javino’s protocol is responsible for sending these percepts
using the serial port of the microcontroller. In this architecture, it is possible
to use any kind of microcontrollers whereas it employs a library compliant with
Javino’s protocol. Afterwards, a MAS programming language is employed to
allow the cognitive control of the robot platform. The chosen program language
should be able to host the existing versions of Javino’s protocol or to implement
a new one. An overview of the architecture is shown in Figure 3.

The architecture is composed of three layers: hardware, firmware and reason-
ing. The hardware layer is responsible for mounting the robot platform, sensors,
actuators and connecting them with respective microcontrollers employed. A
single-board computer is used to connect all microcontrollers using USB and
will be responsible for hosting the MAS. The firmware layer provides all actions
that a robot can execute including procedures for both sensors and actuators
and they are programmed directly in the microcontroller. Basically, these pro-
cedures send prepared raw data as percepts for the reasoning layer and receive
agent’s messages to perform some action, both using serial communication and
the hardware-side of Javino’s protocol.

REASONING U

R deliberated

action percepts

PROTOCOL

SERIAL

action prepared
messages percepts

| FIRMWARE ﬂ

low-level

commands raw data

“ S

HARDWARE
REAL WORLD

Fig. 3. Overview of a robot’s architecture using Javino.

The reasoning layer represents the MAS’s programming using a high-level
language. The middleware in software-side transmits received percepts from se-
rial port to the agent and sends action messages to the firmware layer. Depending
on the AOPL chosen, it is possible to integrate received percepts directly into
the agent’s reasoning cycle or to use some structure to control the perception
flow. As the architecture allows many microcontrollers in a robot platform, a
strategy for capturing those percepts should be implemented. For example, it is
possible to read all available serial ports one by one and after that to update the
agent’s percepts or to allow the agent decide which serial port it desires to use
at a particular moment. Note that an agent cannot access more than one serial
port at a time and more than one agent cannot access the same serial port at
the same time.

In most of the commercial platforms, programmers do not have access to
implementation details or they have to use an interface as a middleware for
controlling the robot; on the other hand, these platforms also present a suite of

functions to help in robot motion and planning. Our approach aims to be an
architecture for open robot design to be used in cases where the programmer
needs freedom to build his own prototype, using open platforms such as Arduino.
The architecture is not bound neither to the MAS programming language, which
can be interchanged, nor to the hardware adopted. However, it is necessary to
adjust the raw data translation to percepts in the firmware layer, if the AOPL
is changed.

4.2 ARGO Architecture

In the reasoning layer of our proposed robot architecture, it is necessary to
adopt an AOPL which will be responsible for the cognitive reasoning of the
robot platform. For this, we propose a customized Jason’s architecture named
ARGO employing perceptions filters and Javino integrated into Jason agent’s
reasoning cycle.

The BDI in Jason implies a high cost of processing the perceptions since for
each one of the received literals an event is generated. In complex codes, plans
may be added in running time, and a quite large intention stack is generated.
In these cases, if the robotic agent has to achieve a goal within a time limit, it
may not succeed. Our idea is to apply perception filters in these cases, so as to
enable the agent to deliberate in time, in order to act in such critical applica-
tions. ARGO aims to be a practical architecture for programming automated
embedded agents using BDI agents in the robotics domain.

In a MAS using ARGO, there are two types of agents which can be employed:
ARGO agents and common agents provided by the Jason framework. An ARGO
agent is able to directly control the actuators at runtime and it receives percep-
tions from the sensors automatically within a pre-defined time interval. Once
the agent has received perceptions, it can filter them based on its actual config-
uration. It is also able to change its filters at runtime based on its needs (the
same can occur when accessing its devices).

An ARGO agent is able to communicate with others common Jason agents,
but only ARGO agents can control devices and receive perceptions from the
real world. Because of this characteristic of the architecture, ARGO agents can
send their received perceptions to other agents: they can either delegate for Jason
agents the reasoning about these perceptions if idesirable or process all incoming
percepts by themselves. In the first case, the ARGO agents are dedicated only
to activate/deactivate devices, to get perceptions and to distribute perceptions
to other agents instead of overcharging their reasoning by processing all received
and filtered perceptions. In the latter case, a delay in some action response can
occur if the processing cost of reasoning with the received perceptions is higher
than the expected response time for example. An overview of ARGO can be seen
in Figure 4.

An agent can assume to be an ARGO agent by defining the Argo architecture
in the MAS design; otherwise, the standard agent architecture of Jason is auto-
matically defined. An ARGO agent is supposed to connect to one or more devices
at runtime by choosing which serial port it wants to access (until the limit of

0 ;
o lT- JAVINO DEVICE
:
0 :
elmmo DEVICE

-

DEVlCE
JAVINO D

DEVICE savino H

oma

(D) common g

Fig. 4. ARGO overview.

127 serial ports); however it can only use one port at a time, for both sensing
and acting. Besides that, different ARGO agents must not use the same serial
port at the same time, because when exists a competition for communicating at
the same port, there may be a data loss [8].

4.3 Internal actions

As mentioned before, an ARGO agent has the ability to control devices at run-
time. It means that it can evolve in the real world using the robot’s actuators
and sensors. In practice, the agent controls devices using serial communication
by choosing a serial port where the desired component is connected. Once de-
fined the serial port, the agent can start receiving perceptions or can send a
command to an actuator.

However, if the serial port is fixed for an agent, it will not be able to change
it or to connect to other devices. Another issue is the perceiving ability: a Jason
agent receives perceptions from sensors in every BDI cycle, even when it does not
need them. Since an agent is an autonomous entity, we believe that an ARGO
agent has to be able to decide when to perceive the real world at runtime. This
means that the agent can start and stop perceiving from sensors when needed
or it can define an interval for receiving these perceptions. Similarly, it can also
directly control the actuators by defining at runtime which serial port to use.
Moreover, bu using the ARGO architecture perception filtering technique, an
agent can change at runtime its filters based on its needs, hence customizing its
perception policy.

Therefore, we propose five internal actions for programming agents in Jason
along with ARGO architecture. A Jason’s internal action is a kind of action that
is used to extend the agent capabilities. The proposed internal actions are:

1. limit(x): defines the sensing interval, where x is a value in milliseconds;

2. port(y): defines which serial port should be used by the agent, where y is
a literal representing the port identification, e.g. COMS;

3. percepts(open—block): decides whether or not to perceive the real world,;

4. act(w): sends to the hardware an action, represented by literal w, to be
executed by a microcontroller;

5. change_filter(filterName): defines the filter to constrain perceptions in
runtime, where filterName is the name of the XML file containing the filter
constraints.

4.4 Customizing Jason for ARGO

In Jason’s reasoning cycle, as mentioned in section 2.1, the agent gets its percepts
from the simulated environment provided by Jason. We extended the reasoning
cycle of Jason, shown in Figure 5, to providing a customized architecture for
ARGO agents. First, Javino middleware is now responsible for getting percepts
coming from low-level layers and sends them to the perceive step. Before being
incorporated in the belief base, percepts can be filtered based on the agent’s
active filter. Then, filtered perceptions are processed and the reasoning cycle
flows up to the act step, where the agent can perform basic Jason’s actions or
an action to control the actuators of the robot, which once more involves Javino
middleware.

In order to create ARGO architecture, it was necessary to customize Jason
framework, in particular by extending the AgArch class. This class is responsible
for the Jason’s native architecture and provides a list of perceptions sent by the
Jason’s environment in Java and the communication with other agents [2]. In
the extended architecture, Javino middleware was inserted as a communication
bridge to the hardware sensors and actuators. Besides that, the serial port iden-
tification had to be added to the native AgArch class in order to define to which
serial port the Javino has to communicate.

ARGO

JASON

beliefs. Belief
Base

—
internal

actions actions
act [octions
ction|

external

fs.
add Plan
and | Library.
te

update
intention

intention

Fig. 5. ARGO reasoning cycle.

In the TransitionSystem class, two new attributes blocked and limit were
created, as well as a new function real WorldPerceptions. The blocked attribute
is responsible for blocking or unblocking the perceptions and the limit attribute
specifies a time interval for perceiving the real world (data from sensors). The
real WorldPerceptions verifies in each cycle (i) if the percepts are blocked; or (7i)
if the time limit for the next perception has been reached. If the percepts are
not blocked and the time limit was reached, Javino requests the percepts from
sensors and sends them to the perceive method in Agent class.

Before the agent processes the percepts coming from Javino, they can be
filtered using the method filter also implemented in the Agent class. In this
case, all agents have the ability to filter percepts, because this method was
implemented in the native Agent class. The modifications executed do not change
Jason’s original functionality, except for the simulated environment which is not
used since Javino gets the percepts from the real world. We opted for creating a
customized architecture instead of an infrastructure because the later one obliges
all agents to be ARGO agents.

5 Experiments

5.1 Case study

In order to evaluate the overall architecture and to assure the impact of the
perception filter, we assembled a robot composed of four distance sensors, four
light sensors, four temperature sensors, an Arduino board and an Arduino 4wd
chassis. A sensor of each type was placed in each of the four sides of the robot
(front, back, right and left). The robot was placed on a flat surface two meters
away from a wall. When started, the robot would perceive the environment and
move forward at a constant speed? until the distance to the wall was less than a
specified value. As soon as it perceived that the distance was smaller, the robot
should stop. The robot can be seen in Figure 6.

Fig. 6. The robot used in the experiments.

% The speed is about 10 cm/s and it is not used in the experiments since it is constant.

5.2 Experiment design

The experiment presented was designed based on the experimental design guide-
lines presented in [12]. According to the author, the goal of a proper experimen-
tal design is to obtain the maximum information with the minimum number of
experiments. The procedure separates the effects of various factors that might
affect the performance and allows to determine if a factor has a significant effect
or if the observed difference is simply due to random variations caused by mea-
surement errors and/or parameters that were not controlled. It is important to
define the meaning of four terms:

1. Response Variable is the outcome of an experiment. In the experiments ex-
ecuted, the response variables are the processing time taken by the agent to
stop after perceiving the wall and the distance it stopped from the wall;

2. Factors are the variables that affect the action response variable. Factors can
be Primary or Secondary. Primary factors are those whose effects need to
be quantified while secondary factors are those that impact the performance
but whose impact we are not interested in quantifying. The primary factors
chosen for this experiments were the distance the agent should stop from the
wall, the time interval for receiving the perceptions and the filter used;

3. Levels are the values that a factor can assume. The factors and levels used
are presented in Table 1;

4. Replication is the repetition of all or some experiments. If all experiments in
a study are repeated three times, the study is said to have three replications.

Factor Levels

Distance 40 cm 80 cm 120 cm
Perception interval| 20 ms 35 ms 50 ms
Filter No filter|Front Side|Front Distance

Table 1. Factors and levels used for the experiment

The three filter levels represent the filter configurations that were used. “No
filter” represents that the ARGO architecture did not make use of the perception
filters, “Front Side” represents that the filter removed all the perceptions, except
the ones from the sensors present on the front side of the robot. “Front Distance”
represents that the filter removed all the perceptions, except the ones from the
distance sensor present on the front side of the robot. Three executions were
conducted for every combination of levels in Table 1.

5.3 Implementation

The agent has an initial belief that represents the distance limit from the wall
that the robot should stop. It has also an initial intention that leads to a config-
uration plan, where it is defined both the serial port to which the Arduino board

is connected and the perception interval limit. We ran experiments varying this
value using 20 ms, 35bms and 50ms. Perceptions are then unblocked, since ini-
tially perception is blocked by default. The next action activates the filter that
is responsible for filtering every perception except those from the front sensor of
the robot. We ran experiments using a filter for all sensors except for the dis-
tance sensor in the front of the robot, and another round of experiments using
no filters at all. The last action of the plan is an achievement action for a plan
responsible for starting moving the robot.

The first action of the start plan is a message for the microcontroller to
activate the motors and to move ahead. A belief with a status indicating that
the robot is moving ahead is then added to the belief base of the agent. An
achievement action for the moving plan is performed by the agent. The moving
plan is responsible for verifying if the received filtered perception of the front
distance sensor of the robot is greater than the initial belief of the distance limit.
If so, the agent sends a message to the microcontroller to keep moving ahead.
Otherwise, the robot crossed the distance limit and should stop. For this end,
the agent sends a message to the microcontroller to stop the motors of the robot.

Some plans for using the temperature sensors and the light sensors were also
provided. In this cases, when the perceptions of these both sensors are received,
the agent sends a message to the microcontroller to turn on/off a specific led
light positioned on each side of the robot, which informs when the received values
crossed the limit specified in the agent code (in this case 100 for the light and
25C for temperature). The agent code is shown in Figure 7.

In our case, we used a single agent for controlling the robot, because we
employed only one microcontroller where all the sensors and the robot’s motors
were connected to. If more than one agent tries to connect to the same serial
port, conflicts arise. However, the architecture is sufficiently flexible to alow to
develop a MAS for controlling the robot; in such a case, each employed ARGO
agent could be responsible for controlling a kind of sensor (light, distance, and
temperature), and the robot would be equipped with three microcontrollers.

5.4 Results

The first response variable analyzed was the distance the agent stopped from the
wall. Figure 8 shows the results of all possible value combinations of the different
factors presented in Table 1. Bars that do not appear in the Figure mean that
the agent collided with the wall.

One should notice initially that in all cases, the agent that didn’t filter its
perceptions collided with the wall (there is no any blue bar in the Figure). In
some cases, for instance the distance limit 120 cm, the agent with front side filter
arrived eventually to stop before the wall; however, in these cases it stopped
always closer to the wall when compared to the agent that used front distance
filtering.

The agent using front distance filtering outperformed the others in quite all
the experiments, and it was able to successfully stop before hitting the wall in
all the experiments when the distance limit was 80 ¢m or 120 cm. Since this

QOO0 Uk W =

value (40).
lconfig.

+!lconfig: true <-
.port (COM5) ;
.1limit (20);
.filter(byValue);
.percepts (open) ;
!'start.

+!start : true <-
.act(front);
+status (front);
'moving.

+!moving: dist(f, X) &
value (J) & X>J &
status (front) <-
.act(front);
'moving.

+!moving: dist(f, X) &
value(J) &
X<=J & status(front)
.act(stop).

-!moving <-
!'moving.

+light(X,Y) : Y>100 <-
.act(ledLightOn).

+light (X,Y) : Y<=100 <-
.act(ledLightOn).

+temp(X,Y) : Y>25 <-
.act(ledTempOff).

+temp(X,Y) : Y<=25 <-
.act(ledTempOn).

Fig. 7. Agent code.

<_

-
o]
S

|| ®No filter

H
8
T

M Front Side

©

3
b
I

W Front Distance

40

Distance to the wall after stopping

Interval | Interval | Interval | Interval | Interval | Interval | Interval | Interval | Interval

Distance Limit 40 Distance Limit 80 Distance Limit 120

Fig. 8. Distance to the wall after stopping.

agent focuses only in perceptions coming from the front sensor, Jason’s internal
mechanism generates less events, and the agent can thus reason faster than an
agent without any filter. However, in some experiments (for example, distance
limit 40 cm and perception interval 50), neither agent could avoid the collision.

The second response variable analyzed was the elapsed time taken by the
agent to stop after perceiving the wall. For this experiment, we calculated the
variation assigned to each factor, as detailed in [12]. This statistical analysis is
useful to check which factors are responsible for the differences in the response
variable. The calculated values are presented in Table 2.

Factor Variation attributed
Distance Limit (L) 1,415%
Perception Interval (I) 0,165%
Filter (F) 88,965%
Interaction between L and I 0,525%
Interaction between L and F 3,715%
Interaction between I and F 0,265%
Interaction between L and I and F 1,725%
Error 3,28 5%

Table 2. Variation assigned to each factor in the analysis of the response time.

The results confirm the importance of the perception filter in reducing the
processing time, since almost all variation was attributed to this factor. This re-
sult suggests that ARGO architecture, by integrating Javino and the perception
filters, can be used for developing embedded robotic agents in a way that the
agent can benefit from the BDI architecture with a smaller influence of one of
its major drawbacks that would be the high processing time.

6 Related Work

Robot architectures usually deal with platforms, sensors, actuators, program-
ming language and reasoning mechanisms. One challenge is how to integrate
these components in a way that a robot can deliberate to perform a task with-
out failing to accomplish its goal. In [21] the authors propose a cognitive control
architecture integrating knowledge representation of sensory and cognitive rea-
soning of a robotic agent using GOAL. The architecture consists of four decou-
pled layers: robot platform, robot behavioral control, environment interface and
cognitive control. The robot platform employed was the humanoid NAO and it
used URBI as middleware for interfacing with the robot’s hardware via TCP /IP
protocol. The robot behavioral control layer is responsible for processing sensory
data and monitoring and executing behaviors. Besides, this layer communicates
(using TCP/IP) with the reasoning and the robot platform layer, transmitting
sensory data and actions execution respectively. The interface layer uses a trans-
lation mechanism between the sensory information acquired from the behavioral
layer and the percepts sent to the cognitive layer. This layer is necessary because
symbolic and sub-symbolic information can use different languages. The mecha-
nism is based on a standard template using XML files mapping, which indicates
how to map data but also when to do it. The cognitive control layer uses GOAL
[10], which is a logic-based programming language for cognitive agents.

Similarly, ARGOQO’s architecture also divides the robot programming into lay-
ers, separating sensory data from the agent’s reasoning. We exploit the advan-
tages of Jason extending it for programming robotic agents. ARGO provides
three layers to be programmed: hardware, firmware and agent reasoning. Our
proposed architecture provides a support for exchanging the hardware and the
firmware without concerning with the reasoning layer; furthermore, it is possible
to change the agent programming language without changing either the hardware
or the firmware. This is possible because Javino is responsible for exchanging
serial messages between these layers, and it does not link them to each other.
We do not provide a translation mechanism in high-level layers because of the
processing cost, which can affect the robot efficiency. However, the translation
from raw data into percepts is done in the firmware layer. Since ARGO aims to
be used in open platforms, the programmer must code the firmware layer. For
commercial platforms such as NAO and Lego Mindstorms, a percepts mapping
process must be provided.

Some other works also use Jason for this end, such as [16] [15]. In [16],
CArtAgO [18] is used as the functional layer for providing artifacts that represent
sensors and actuators of a robot, and Jason is used as the reasoning layer. Despite
using artifacts, which is an interesting abstraction for the devices employed, the
authors use a simulator named Webots and do not embed the MAS. In [15], the
authors provide a Jason extension for ROS named Rason.

Javino’s protocol provides a mechanism for avoiding noisy data in communi-
cation between the firmware and the reasoning layer. However, we do not treat
noisy data coming directly from sensors, when they provide well-formed but
wrong values. In [7], the authors present a programming language for cognitive

robots and software agents using the 3APL [11] language, which implements
a deliberation cycle for selecting and executing practical reasoning rule state-
ments and goal statements. They also provide an architecture consisting of be-
liefs, goals, actions and practical reasoning rules as a mental state. The beliefs
represent the robots percepts of an environment. The authors focused only on
the programming constructs, they do not provide information about how a robot
platform should interact with the high-level language.

In [6], a Teleo-Reactive (TR) extension for programming robots is presented,
supported by a double tower architecture which provides a percepts handler that
atomically updates the BeliefStore (a repository of beliefs). After that, the ar-
chitecture reconsiders all rules affected by this change. The authors assert that
actions and percepts can be dispatched through ROS interface to the robot plat-
form. TR extension uses low-level procedures written in procedural programming
languages for sensorial data and actuators actions. Concerning implementation,
they used Qu-Prolog, simulators and Lego Mindstorms robots.

ARGO has the same intention of facilitating the programming of robotic
agents providing a mechanism for automatically updating the agents belief base.
The TR extension provides an inhibition process of some behaviors in response
to percepts while ARGO provides a runtime process for filtering percepts that
are not needed at a specific moment. Filtering perceptions in ARGO prevents
unnecessary event triggering in the deliberative cycle of Jason, therefore, the
agent deliberation should be more efficient.

7 Conclusions and further work

According to our studies, we concluded that using perception filters in appli-
cations where the response time is critical is an essential feature for agents
developed in Jason. For this end, we have proposed the ARGO architecture.
Perception filters enhance ARGO performance and make it practical feasible
since it reduces significantly the perception processing and the events generated
for each perception. Hence, it is a major feature in the ARGO architecture. How-
ever, in some applications, we believe that a delay in responses for perceptions
processing can be tolerated and do not interfere with the goal of the MAS (i.e.
applications where the response is not time-bounded).

In the ARGO architecture, an agent in a MAS can control different microcon-
trollers since the programming layer is independent of the microcontroller choice.
This is an important issue because it is not bonded to a specific microcontroller
technology allowing mixing other microcontrollers to a single prototype. More-
over, it is not bonded even to the MAS implementation, since it is possible to
change the MAS code without changing the microcontroller code. This is possi-
ble because the microcontrollers run separately and they communicate with the
MAS using serial communication. Basically, every ARGO agent requests per-
ceptions or send actions acquiring a serial port connected to a microcontroller
using Javino. This creates an uncoupled development environment for proto-

types and robotic platforms using Jason framework, thus offering different ways
of controlling low-cost boards with agents for several purposes.

In a MAS using ARGO it is possible to merge common agents (default agents
from Jason framework) and ARGO agents (customized architecture) into a single
project, but separating some responsibilities. Since just ARGO agents can get
perceptions from the real world, a design issue may be raised: is it a better
solution that uses only ARGO agents, possibly overcharging some ARGO agents
or to delegate to common agents some processing information and deliberation
responsibilities, thus isolating ARGO agents only to sensing and acting functions.
We leave these questions as future work.

In order to achieve the customized architecture, some modifications were
performed in the Jason framework. However, they do not change the original
Jason functionalities, because they are just used for ARGO agents. Hence, there
is no difference between the Jason framework and the ARGO architecture when
a MAS uses using only common agents. The ARGO customized architecture
benefits from the Jason framework extensibility ability to provide custom made
architectures.

In our experiments, we show that applying the perception filter together
with Javino reduces significantly the time of processing perceptions in Jason.
In a real-time collision scenario, where the agent had to reason and stop before
colliding with an obstacle placed at 120cm, 80cm, and 40cm, the experiments
showed the agent was able to stop before colliding only by using perception filters
. The ARGO architecture aims to provide programming structures that allow
coding robotic agents using Jason. It means that an agent can decide when to
act and to perceive at runtime. Furthermore, it is able to change perceptions
filters based on its needs, and to decide what device it will be connected to at a
certain time during its execution.

For future work, we intend to extend the ARGO architecture for program-
ming multi-robot systems through a communication protocol between robotic
agents. Moreover, it is necessary to test ARGO in different domains and apply
robotics technics such as SLAM. We will also intend to provide other hardware-
side libraries, for instance for PIC and Intel families.

Acknowledgments

Marcio F. Stabile Jr. is financed by CNPq. Carlos Pantoja is financed by CAPES.
Jaime Sim&o Sichman is partially financed by CNPq, proc.303950/2013-7.

References

1. Barros, R.S., Heringer, V.H., Lazarin, N.M., Pantoja, C.E., Moraes, L.M.: An
agent-oriented ground vehicles automation using Jason framework. In: 6" Inter-
national Conference on Agents and Artificial Intelligence. pp. 261-266 (2014)

2. Bordini, R.H., Hiibner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley & Sons Ltd (2007)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Bratman, M.E.: Intention, Plans and Practical Reasoning. Cambridge Press (1987)
Calce, A., Forooshani, P.M., Speers, A., Watters, K., Young, T., Jenkin, M.R.:
Autonomous aquatic agents. In: ICAART (1). pp. 372-375 (2013)

Chen, S.Y.: Kalman filter for robot vision: A survey. IEEE Transactions on Indus-
trial Electronics 59(11), 4409-4420 (2012)

Clark, K., Robinson, P.: Robotic agent programming in TeleoR. In: Robotics and
Automation, 2015 IEEE International Conference on. pp. 5040-5047 (2015)
Dastani, M., de Boer, F., Dignum, F., Van Der Hoek, W., Kroese, M., Meyer, J.J.,
et al.: Programming the deliberation cycle of cognitive robots. In: Proc. of the 3rd
International Cognitive Robotics Workshop (2002)

Guinelli, J.V., Junger, D., Pantoja, C.E.: An Analysis of Javino Middleware for
Robotic Platforms Using Jason and JADE Frameworks. In: 10*" Software Agents,
Environments and Applications School (2016)

Hama, M.T.: Uma plataforma orientada a agentes para o desenvolvimento de soft-
ware em veiculos aéreos nao-tripulados. Master’s thesis, Universidade Federal do
Rio Grande do Sul, Porto Alegre, Brazil (2012)

Hindriks, K.V.: Programming rational agents in GOAL. In: Seghrouchni, A., Dix,
J., Dastani, M., Bordini, H.R. (eds.) Multi-Agent Programming: Languages, Tools
and Applications, pp. 119-157. Springer US, Boston, MA (2009)

Hindriks, K.V., De Boer, F.S., Van der Hoek, W., Meyer, J.J.C.: Agent program-
ming in 3APL. Autonomous Agents and Multi-Agent Systems 2(4), 357-401 (1999)
Jain, R.: Art of Computer Systems Performance Analysis: Techniques For Exper-
imental Design Measurements Simulation and Modeling. Wiley (2015)

Kuiper, D.M., Wenkstern, R.Z.: Agent vision in multi-agent based simulation sys-
tems. Autonomous Agents and Multi-Agent Systems 29(2), 161-191 (2015)
Lazarin, N.M., Pantoja, C.E.: A robotic-agent platform for embedding software
agents using raspberry pi and arduino boards. In: 9** Software Agents, Environ-
ments and Applications School (2015)

Morais, M., Meneguzzi, F., Bordini, R., Amory, A.: Distributed fault diagnosis
for multiple mobile robots using an agent programming language. In: Advanced
Robotics (ICAR), 2015 International Conference on. pp. 395-400 (2015)
Mordenti, A., Ricci, A., Santi, D.I.A.: Programming robots with an agent-oriented
bdi-based control architecture: Explorations using the jaca and webots platforms.
Bologna, Italy, Tech. Rep (2012)

Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: de Velde, W.V., Perram, J.W. (eds.) Proceedings of the 7th European workshop
on Modelling autonomous agents in a multi-agent world (MAAMAW’96). Lecture
Notes in Artificial Intelligence, vol. 1038, pp. 42-55. Springer-Verlag, USA (1996)
Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in
CArtAgO. In: Seghrouchni, A., Dix, J., Dastani, M., Bordini, H.R. (eds.) Multi-
Agent Programming: Languages, Tools and Applications, pp. 259-288. Springer
US, Boston, MA (2009)

Santos, F.R., Hiibner, J.F., Becker, L.B.: Concep¢ao e andlise de um modelo de
agente BDI voltado para o planejamento de rota em um VANT. In: 9" Software
Agents, Environments and Applications School (2015)

Stabile Jr., M.F., Sichman, J.S.: Evaluating perception filters in BDI Jason agents.
In: 4'" Brazilian Conference on Intelligent Systems (BRACIS) (2015)

Wei, C., Hindriks, K.V.: An agent-based cognitive robot architecture. In: Dastani,
M., Hiibner, J.F., Logan, B. (eds.) Programming Multi-Agent Systems: 10th Inter-
national Workshop, ProMAS, Valencia, Spain, pp. 54—71. Springer, Berlin (2013)
Wooldridge, M.J.: Reasoning about rational agents. MIT press (2000)

https://www.researchgate.net/publication/311692258

