
A Spin-off Version of Jason for IoT and
Embedded Multiagent Systems

Carlos Eduardo Pantoja1,2[0000−0002−7099−4974],
Vinicius Souza de Jesus1[0000−0002−4534−6078],

Nilson Mori Lazarin1,2[0000−0002−4240−3997], and
José Viterbo1[0000−0002−0339−6624]

1 Institute of Computing – Fluminense Federal University (UFF),
Niterói - RJ, Brazil

2 Federal Center for Technological Education Celso Suckow da Fonseca (Cefet/RJ),
Rio de Janeiro - RJ, Brazil

pantoja@cefet-rj.br, {vsjesus,nlazarin}@id.uff.br, viterbo@ic.uff.br

Abstract. Embedded artificial intelligence in IoT devices is presented as
an option to reduce connectivity dependence, allowing decision-making
directly at the edge computing layer. The Multi-agent Systems (MAS)
embedded into IoT devices enables, in addition to the ability to per-
ceive and act in the environment, new characteristics like pro-activity,
deliberation, and collaboration capabilities to these devices. A few new
frameworks and extensions enable the construction of agent-based IoT
devices. However, no framework allows constructing them with hardware
control, adaptability, and fault tolerance, besides agents’ communicabil-
ity and mobility. This work presents an extension of the Jason framework
for developing Embedded MAS with BDI agents capable of controlling
hardware, communicating, and moving between IoT devices capable of
dealing with fault tolerance. A case study of an IoT solution with a smart
home, a monitoring center, and an autonomous vehicle is presented to
demonstrate the framework’s applicability.

Keywords: Internet of Things · Multi-agent Systems · Edge Computing

1 Introduction

The Internet of Things (IoT) promotes the use of devices that sense physical envi-
ronments in various application domains. However, they generate a considerable
amount of raw data stream that needs to be transmitted to be processed [2].
Pervasive Computing allows the development of distributed cognitive devices
capable of extracting relevant information and making decisions directly at the
edge computing layer, reducing the dependence on connectivity [10].

One of the fields of Distributed Artificial Intelligence (DAI) is Multi-agent
Systems (MAS), which are composed of multiple autonomous and proactive en-
tities with decision-making capacity and social abilities that can collaboratively
interact to achieve a common goal for the system [28]. In this research area, an

2 Pantoja et al.

integration of hardware and software that allow agents to sense and act in a real-
world environment using sensors and actuators is named Embedded MAS [3].
These systems can also contribute to reduce dependency on connectivity since
a cognitive agent embedded in an IoT device can process the raw data received
from sensors and act immediately, thus accelerating decision-making [9].

One of the most well-known cognitive agent architecture, the Belief-Desire-
Intention (BDI) model [7], is based on the knowledge that an agent can have from
the environment (perceptions), other agents, or itself [21]. When applied embed-
ded in devices, it provides decision-making at edge level by using perceptions and
beliefs captured from the real world and other devices [1, 5, 9]. We performed a
mapping review, where we found some works that present a framework [8, 12,
15, 25] or provide some features to construct IoT agent-based devices using BDI
frameworks, such as: extension to provide interoperable between cyber-physical
and IoT systems using fuzzy logic [16]; approaches to reconfiguring agent’s goals
on the fly [11] and developing MAS with IoT objects [6], or architecture to Am-
bient Intelligence with IoT [23]. However, none of these solutions simultaneously
meets all the needs of an agent-based IoT device, such as the hardware con-
trol, the communicability with other MAS or devices, the mobility of the agents
between different MAS or devices, fault tolerance, and adaptability.

This paper presents the Jason Embedded – a spin-off extended version of
the Jason framework [4] – that provides autonomy, pro-activity, social ability,
adaptability, and fault-tolerance to IoT devices. It allows programming agents
dedicated to exchanging KQML messages [14] between different devices and
agents dedicated to controlling sensors and actuators and capable of deciding
when to perceive the environment or yet can define a strategy to gather percep-
tions from sensors. Besides, allow the programming of Open MAS [26], where
agents can move from one system to another using an IoT network.

For this, the reasoning cycle of a standard Jason agent was modified to create
two novel specific types of BDI agents to program Embedded MAS. In the first,
the agent can perceive or act in the environment and monitor the connection
status with wired microcontrollers, allowing fault tolerance and adaptability. In
the second, agents can exchange messages with other MAS and handle agents’
arrival and departure into its MAS. Then, we integrated and adapted the ad-
hoc solutions [17, 19, 24, 27] in a single distribution. Despite the modifications, all
agents maintain the original features of Jason’s agents. Jason Embedded allows
the designer to abstract some aspects of hardware interfacing and communica-
tion, focusing only on programming the MAS. The contribution of this work is an
extended framework to allow hardware controlling, communicability, and agent
mobility to be integrated into a single framework. To demonstrate this, we build
and present a case study that implemented an IoT solution for home monitoring
integrated with a central control and an unmanned autonomous vehicle.

This paper is structured as follows: an analysis of related works is presented
in Section 2; in Section 3 we present the Jason Embedded and the newly avail-
able behavior of agents; we demonstrate an Embedded MAS in a case study in
Section 4; finally, a discussion and future work are presented in Section 5.

A Spin-off Version of Jason for IoT and Embedded Multiagent Systems 3

2 Related Works

A mapping review was conducted to find works that use the BDI framework for
the development of IoT systems based on cognitive agents. We followed these
steps: first was to define the search string3 for Google Scholar which returned 246
results; next, the results were filtered, ignoring duplicity and results that were
not a thesis or a paper, remaining 215; the third step considered only works
published after 2017, remaining 171 works; the fourth step ignored surveys or
reviews, remaining 153 works. After this, 56 works with the words framework,
tool, architecture, library, hardware, IoT, cyber-physical, things, or ubiquitous in
the title were considered for the next step.

Finally, it was rejected the works that were not directly related to IoT and
BDI (i.e., simulation, data mining, and others were discarded); finally, 11 works
remained. Three works [1, 5, 9] only present an IoT implementation based on
cognitive agents. Four works [6, 11, 16, 23] feature an extension to a BDI frame-
work, however, they do not meet all the needs of an agent-based IoT device,
such as the hardware control, the communicability with other MAS or devices,
the mobility of the agents between different MAS or devices, fault tolerance, and
adaptability. Thus, only the below four works [8, 12, 15, 25] present a framework
for programming IoT agents.

The first [8] try to provide connectivity to the Web of Things using an agent-
oriented visual programming IDE using a framework endowed with a REST
endpoint. The IDE is a web-based solution for reducing that expertise in adopt-
ing the BDI. The solution allows agents to discover and connect to Things using
internal structures, but it does not offer embedded solutions to direct control
hardware, being dependent on the IoT infrastructure. Our solution employs spe-
cialized agents to control hardware and access IoT gateways in an extended
version of Jason. The hardware control is independent of the IoT infrastructure,
which is used for the communicability and mobility of agents.

Similarly, the second [12] provides a declarative language in a BDI-like style
for programming MAS for the IoT using microcontrollers in Python. However,
microcontrollers are limited in processing capacity and memory and need other
components to be connected to any IoT Gateway. Withal allows high-level agents
to connect and control these microcontrollers if only they are available and con-
nected to the IoT. The PHIDIAS is an improved version of PROFETA, and it
presents ways of developing intelligence in devices, including IoT, but does not
allow agent mobility between different MAS or Environments. PHIDIA allows
communication using HTTP. The communication between microcontrollers and
agents is performed using wireless devices. The microcontrollers, sensors, and ac-
tuators are not part of the MAS. Besides, one agent is responsible for each edge
device. The third [25] try reduce the gap between theory and practical applica-
tions in cybersecurity using BDI agents and MAS. In their framework, agents
can control IoT devices (remotely or hosted in the device), utilizing API to con-

3 ("embedded" OR "embodied") AND ("multiagent system" OR "multi-agent system")
AND "belief-desire-intention" AND "framework" AND "internet of things"

4 Pantoja et al.

nect to IoT gateways or simulated software. In both, the dependence on IoT
gateways avoid agents from properly working even if embedded. The proposed
in this paper allows agents to directly control hardware using serial communi-
cation (without network connection) and access the IoT network to exchange
information with other MAS.

The fourth [15] try to bring together academic development and industry
by offering ways of developing MAS using recent technologies (e.g., Node.JS).
Similarly, our approach aims to provide and facilitate ways of developing em-
bedded and IoT systems to be adopted in domains such as education, academia,
and industry. In addition to the mapping review, the SPADE 3 [22], in its most
recent version, uses XMPP and has an extension for BDI agents. However, it
does not allow agent mobility between different MAS. The authors even argue
that mobility between different physical or logical nodes is an interesting and
desired functionality, however not contemplated by SPADE.

As previously presented, none of the works embed a MAS in IoT devices with
BDI agents capable of communicating and moving between different Embedded
MAS and also adapting to some faults that may arise in hardware malfunction-
ing, for example. Therefore, our spin-off version of the Jason framework pre-
sented in this work has customized architectures of BDI agents able to control
hardware, communicate, and move between MAS embedded in devices using an
IOT network. Besides, the agents that interface hardware can be fault tolerant
if the hardware becomes unavailable and adapt themselves to find another way
to comply with their goals.

3 Jason Embedded

Jason Embedded4 is an extended version of Jason [4] that supports the devel-
opment of Embedded MAS to provide autonomy and communicability to IoT
devices and mobility and adaptability to agents. In this paper, we define auton-
omy as a characteristic an Embedded MAS provides to a device that does not
need external architectures to control and manage it. Communicability is the
agent’s ability to communicate with other agents in its MAS or another MAS.
We define mobility as the agents’ ability to move from one MAS to another.
Finally, Fault Tolerance and Adaptability are defined as the ability of an agent
to identify if a physical resource is absent or not answering commands and to
overcome this situation by modifying its goals.

Jason Embedded also provides new types of agents to control hardware de-
vices and to communicate with agents hosted in other MAS. Besides, our ex-
tended version allows agent mobility between Embedded MAS, where one agent
or a group of agents can move from one system to another. Then, it special-
izes the MAS by creating agents dedicated to certain functionalities without
modifying the core of Jason, maintaining all of its original functionalities. Jason
Embedded is an initiative employed by our research group in embedded solutions

4 https://jasonembedded.chon.group/

A Spin-off Version of Jason for IoT and Embedded Multiagent Systems 5

to facilitate the development and teaching of practical MAS. The overall picture
of our framework is depicted in Figure 1.

Fig. 1: The overall picture of the framework architecture.

In this approach, the developer can employ Standard, Argo, and Commu-
nicator agents to develop the Embedded MAS. Each type of agent has specific
abilities to deal with hardware interfacing, communicability, and mobility using
an IoT network. Argo agents use hardware interfacing to capture perceptions
from the exogenous environment and send commands to activate actuators. The
Communicator agent has an IoT client middleware for connecting to an IoT
gateway to send messages or agents from one IoT device to another. Standard
agents can communicate and exchange information only with agents from their
system.

For example, in a scenario concerning three different IoT devices hosting
Embedded MAS, one is responsible for managing resources in a house, one is
responsible for a monitoring center, and the last is an emergency vehicle. An
Argo agent monitors the house’s sensors, and if something is detected, it informs
the house’s Communicator agent to send an alert to the monitoring center.
Consequently, the Communicator agent from the monitoring center searches for
an available vehicle and sends a Standard agent to help the Argo agent to drive
the vehicle to attend the house’s emergency. The three devices are distributed,
autonomous, and controlled by an Embedded MAS. They can communicate by
sending messages using an IoT gateway available, and Argo agents perform all
sensing in each device. Finally, agents can move from one system to another.

The new types of agents are based on the standard Jason’s agent reasoning
cycle. Their reasoning cycle is modified at specific points to create new behaviors
without modifying any existing function. In this way, every extended agent is
still a Jason agent. The agent’s reasoning cycle comprises ten steps that com-
plete a BDI decision loop [4]. In the first step, the agent senses the simulated
environment using the Perceive method to gather all available perceptions. At
this point, the agent can only perceive a simulated environment if it exists, and if
it needs to interface with real sensors, this environment must be properly coded.
The last step executes an intention by performing actions from a selected plan.
These two steps represent how the agent can perceive and modify the environ-
ment, and agents could use them to interface sensors and actuators.

6 Pantoja et al.

Then, the first step could allow agents to gather perceptions directly from
sensors and process them as beliefs. Since this mechanism works as passive per-
ception, the agent is aware of all available information, even if it does not need all
of them to accomplish a goal. To overcome this issue, the agent could also decide
whether or not to gather available perceptions and filter undesired perceptions
at runtime. It allows the agent to indirectly perform active perception since it
can decide when and what to perceive, but it always does it in the first step of
its reasoning cycle. Similarly, the last step could allow agents to act upon actu-
ators by adopting a protocol that runs over the serial port by sending activation
commands [24]. The agent does not need to use Jason’s simulated environment
— the endogenous representation of the system’s environment — since it can
directly activate or deactivate actuators in the real world — the exogenous en-
vironment. This approach reduces the use of abstractions and layers to reflect
actions in the device’s hardware where the Embedded MAS is hosted.

In the third step of the reasoning cycle, an agent checks its mail, looking
for messages that other agents from its MAS could have sent to it. Since Ja-
son Embedded aims to provide a framework for programming autonomous and
embedded solutions using agents, it is worthwhile to think of prototypes com-
municating with other prototypes. Considering that each prototype has an Em-
bedded MAS, some agents could work as a communicator, receiving and sending
messages to other communicator agents. Otherwise, the Embedded MAS will be
autonomous and proactive but without social ability. Then, these agents could
check an alternative mailbox with messages from other Embedded MAS. In the
last step, agents could send messages to agents within and out of its system by
addressing other communicators using an IoT middleware, for instance.

As sending a message occurs in the last step, it could also allow specific agents
to move agents from one Embedded MAS to another. In Embedded MAS, agent
mobility is based on bio-inspired protocols [27]. The protocols simulate natural
behaviors that could be explored in collaborative tasks using IoT devices. One
or more agents or even the whole MAS could move from one device to another
to take control of the destination device (predation) or to use it as a temporary
non-hazardous relationship (mutualism and inquilinism) if both parties accept
the protocol. For communicability and mobility, agents must connect to an IoT
middleware to redirect the messages and agents to an agent of the target Em-
bedded MAS. The description of all new internal actions, their behaviors, and
requested parameters can be seen in Table 1.

Below are described the new characteristics allowed by the framework pre-
sented in this work. Jason Embedded offers two types of extended agents: one
for interfacing hardware named Argo and another for communication named
Communicator, responsible for all communications and mobility from outside
its MAS. Besides, Jason Embedded maintains the standard agents present in
the Jason. It is important to remark that the option for specializing agents leads
to well-defined responsibilities, allowing agents to focus on their purpose to min-
imize some drawbacks. For example, when interfacing hardware, it is interesting
that the agent can deliberate, considering the perceptions available at that mo-

A Spin-off Version of Jason for IoT and Embedded Multiagent Systems 7

Agent New Action Description

Argo

.port(S); Defines a serial communication port with an IoT device.

.limit(N); Defines an interval for the cycle of environmental perception.

.percepts(open|close); Listens or not the environmental perceptions.

.filter(add | remove, c, P, C); Defines or not an environmental perception filter.

.act(O); Sends an order to the microcontroller to execute.

Communicator

.connectCN(T,G,E,U,K); Joins an IoT network.

.sendOut(D,f,M); Dispatches a message to another MAS.

.moveOut(D,b,A); Carries over the agents to other MAS.

.disconnectCN; Leaves the IoT network.

Where:
A is one, all, or a set of agents (i.e., all, agent or [agent1, agent2, agentn]).
C is an optional field representing the necessary context for applying the filter.
D It is a literal that represents the identification of the recipient MAS.
E is a number that represents the network port of an IoT gateway.
G is a literal that represents the FQDN or the network address of an IoT gateway.
K is an optional field representing the device’s credentials in communication technology.
M is a literal that represents the message.
N is a positive number (N>0) that represents an interval in milliseconds.
O is a literal that represents an order for the microcontroller to execute.
P is one or a set of environmental perceptions (i.e., perception or [perception1, perception2, perceptionn]).
S is a literal that represents a serial port (i.e., ttyACM0).
T is a literal that represents the communication technology.
U is a literal that represents the identification of the device in the IoT network.
V is an optional field that represents a context to apply the filter.
b is a bio-inspired protocol (inquilinism | mutualism | predation).
c is a filter criterion (all | comply | except | only).
f is a illocutionary force (tell | untell | achieve | unachieve).

Table 1: The Jason Embedded’s internal actions

ment. Suppose the agent is compromised to some other task as communication
or trying to achieve another intention. So, it could affect the agent’s reaction
in some applications and domains where the response time is essential — i.e.,
object deviation.

3.1 Controlling Hardware

Argo is a customized agent architecture built on the Jason framework that
extends Jason’s standard agents by adding the ability to control microcon-
trollers [24]. Argo agents interact with the physical environment, capturing in-
formation from the environment using sensors and acting by sending commands
to the microcontroller to activate the actuators. Sensors’ information is auto-
matically processed as perceptions in the agent’s belief base. Argo agents have
four internal actions to control microcontrollers: port, limit, percepts, act, and
filter. These actions define which port the agent is accessing, a time limit for
accessing them, if they open or close the flow of perceptions, activate actuators,
or filter the incoming percepts, respectively. Argo architecture was modified to
work properly along with all existing architectures since it was initially designed
to be an ad-hoc solution. Furthermore, the behavior of swapping resources [17] at
runtime was added to avoid stopping the Embedded MAS during its execution.

8 Pantoja et al.

3.2 Communicability

The Communicator agent is another customized agent architecture built on Ja-
son’s Standard agent by adding the ability to communicate with agents from
other MAS, which also have Communicator agents [23]. It allow agents from
different MAS to interact, exchange knowledge and even collaborate between
them. The Communicator agent can interact by exchanging knowledge and even
collaborating between them using KQML performatives [14]. To use these new
capabilities, the communicator agent has specific internal actions: connect, dis-
connect, and sendOut. These actions connects and disconnects from the IoT
Gateway, and send a message to another Embedded MAS. The Communicator
agent is a client instance of an IoT middleware [13] that needs an IoT Gateway
to communicate. The agent can send a message to another MAS using this IoT
middleware even if the target is disconnected. Once it connects, the message is
redirected.

In this case, the original communicator architecture was totally modified to
allow the connection in the IoT Gateway generically and work with Argo agents
in the same Embedded MAS. The connect and disconnect are new functionalities
once the agent sometimes can deliberate whether to be offline.

3.3 Mobility

Subsequently, the Communicator architecture was extended with bioinspired
protocols [27] following ecological relations concepts that allow agents to be
transferred between different MAS. They can be used to preserve the MAS
knowledge if the physical device is damaged since it is subject to the unpre-
dictability of the real world. The bioinspired protocols currently have three eco-
logical relations implemented: Predation, Inquilinism, and Mutualism: in Pre-
dation, all agents are transferred to the target MAS to prey and dominate. It
eliminates all agents of the target and the origin MAS (after moving them) to
prevent unwanted access to any residue of its knowledge; in the Inquilinism, it
sends all its agents to the target MAS to preserve its knowledge, but they do not
interfere in its activities and existence. However, similar to the predation proto-
col, the origin MAS is eliminated to prevent unwanted access to any residue of
knowledge; the Mutualism sends an agent, a group of agents, or the entire MAS
to interact, learn, and transmit knowledge to a target MAS. Agents using this
protocol can return to the origin MAS or move to any other if allowed.

The Communicator has the moveOut internal action for the mobility behav-
ior. It uses the IoT middleware instance to move agents from one system to
another. In this version, Mutualism was modified to send all agents except the
Communicator since the agents need a way to return to the origin MAS. In the
Inquilinism, we modified the protocol to drop all desires in the target MAS of
the moving agents since they cannot interfere with the MAS functioning. We
modified the protocols to guarantee the departure and arrival of agents to avoid
communication problems and that agents do not get lost during the agents’
transference.

A Spin-off Version of Jason for IoT and Embedded Multiagent Systems 9

4 Case Study

In the case study, we consider a scenario, shown in Figure 2, that integrates a
smart home, a central control, and an unmanned vehicle, all controlled by Multi-
agent Systems. The MAS running in the central control has a Communicator
to forward service calls and two Jason agents for decision-making in case of
calls. The vehicle has an Argo agent for driving and a Communicator agent
for receiving agents to use the vehicle. The MAS running in the house has a
Communicator agent responsible for interacting with the central and an Argo
agent controlling the sensors and actuators.

Fig. 2: The scenario of the case study proposed.

In this scenario, when the Argo agent in the House’s Embedded MAS per-
ceives a change in a specific sensor, it will inform the Communicator agent to
send a message to central control. In the central control, the message is forwarded
to a coordinator agent, who will send an agent to the house to analyze it. After
completion, the sent agent will send a message to the coordinator requesting a
patrol. The coordinator agent will migrate to an unmanned vehicle to execute
the mission. When in the vehicle, the coordinator will inform the driving agent
about the path.

To fulfill the proposed scenario, we built three Embedded MAS: the first –
Batcave project – represents the house, hosted in a Raspberry Pi with an Arduino
Board and has an LDR (light dependent resistor) sensor and a LED (light-
emitting diode) as the actuator; the second – WayneMansion project – represents
the control center, hosted in a Raspberry Pi; the third – BatMobile project –
represents the unmanned vehicle, hosted in a ChonBot 2WD [18] prototype.

When the Argo agent in the house MAS (batCave.mas2j) notices a change
in the environment (batSignal(true)) it activates an actuator (led(red)) and re-
quests the Communicator agent to forward an alert to the center control MAS
(wayneMansion.mas2j). The Figure 3 shown the code of the BatCave project.

When this alert arrives at the destination, it is forwarded to the Jason agent
responsible for handling occurrences (bruce.asl); when analyzing the alert, the
agent Bruce decides to designate other Jason agent (alfred.asl) to verify the situ-
ation (at MAS BatCave). The agent Alfred requests the Communicator agent of
WayneMansion MAS to transfer itself to BatCave MAS; after this, the Commu-
nicator of BatCave MAS receives the agent Alfred in the system. Alfred requests

10 Pantoja et al.

Fig. 3: The implementation of the BatCave project.

the Argo agent for a new check of sensors and to change the alert state to yellow
(led(yellow)); finally, Alfred requests to Communicator of BatCave MAS to send
a message to agent Bruce. The Figure 4 shown the code of the WayneMansion
project.

Fig. 4: The implementation of the WayneMansion project.

The Communicator of WayneMansion MAS forwards the message to Bruce,
who decides to patrol near the house. In this way, it requests the Communicator
to transport itself to the autonomous unmanned vehicle (batMobile.mas2j); once
it arrives in the BatMobile MAS, the agent Bruce requests to Argo agent to pilot
the vehicle (goAhead). Figure 5 shown the implementation of the BatMobile
project. Finally, all projects’ Argo and Communicator agents have standard
plans, beliefs, and intentions shown in Figure 6.

A Spin-off Version of Jason for IoT and Embedded Multiagent Systems 11

Fig. 5: The implementation of the BatMobile project.

Fig. 6: The common source of the Argo and Communicator agents.

Aiming to enable the reproducibility of what is presented in this work, the
framework and its source code, the implementation of the case study, and a
demonstration video using prototypes representing the house, the control center,
and the unmanned vehicle of the proposed scenario are available5.

5 http://bracis2023.chon.group/

12 Pantoja et al.

5 Discussion

This paper presented an extended version of the Jason framework named Jason
Embedded to program autonomous devices using BDI agents. It provides two
new types of agents for allowing hardware interfacing, IoT-based communication,
and mobility between different Embedded MAS. Besides, Jason’s agents can deal
with the MAS’s internal issues where it lives. We also presented a study case to
cover the new functionalities provided by the extended framework.

Using an Embedded MAS could bring advantages compared to adopting
just one agent to interface all prototype’s functionalities. One agent could be
overloaded depending on how much information it gathers or which goals it is
pursuing. The decision to use a framework that allows specialized agents to deal
with certain functionality leads to an internal distributed solution to optimize
the response to stimuli. If one agent has to deal with both perception gathering
and external mail checking, it can eventually get overloaded. A prototype em-
bedded with a MAS is autonomous and proactive by its capabilities of perceiving
and acting upon the real world. However, when dealing with prototypes, it is
important that these autonomous devices could collaborate somehow. Jason Em-
bedded allows these prototypes to exchange messages using the Communicator
agents. Then, devices with different Embedded MAS can negotiate, coordinate
and exchange information without being part of the same physical architecture
or network. They only need the Internet to connect to the IoT server.

Every Embedded MAS is an Open MAS if it adopts at least one Communi-
cator agent. An Open MAS allows agents to enter and leave the system when-
ever necessary. So, in our extended version, the Communicator is responsible for
moving agents (and itself) to other systems by invoking bio-inspired protocols.
Depending on the domain, agents can move and dominate the destiny system
or co-exist within the new one. In some cases, the agents can come and go from
a system (mutualism). These two contributions now allow communicability and
mobility in BDI agents using Jason by using some new internal actions since all
background technologies are abstracted from the designer.

Jason Embedded could run on any platform or IDE that the designer chooses.
But to exploit the most of it, it can work along the ChonOS and ChonIDE,
which are an OS distribution and an IDE, to support the embedding process
and develop a MAS using Jason Embedded. The OS comprises all the necessary
technological dependencies in a single distribution, including the IDE to pro-
gram the firmware and the MAS, start and stop the Embedded MAS, verify the
prototype’s outputs (logs), and inspect the mind of any agent. We remark that
it has been an initiative of our research group to develop embedded solutions
during the past years. In this paper, we consolidate several solutions that used
to work alone into a single framework to facilitate their use and adoption.

In future works, we will provide an alternative to program artifacts that in-
terfaces hardware using a serial interface and CArtAgO [20]. Then, the designer
can choose between Argo agents and artifacts. The former is one agent dedicated
to interface sensors and actuators, while the latter could be available to all agents
existing in the system. Furthermore, the Communicator agent needs a different

A Spin-off Version of Jason for IoT and Embedded Multiagent Systems 13

format for identifying itself in the system since it uses a non-intuitive hexadec-
imal number. One possibility would be to use an email address to identify the
Communicator agent. Besides, two new protocols could help in the development
process of Embedded MAS: cloning could be used to send a copy of one or more
agents to another system without killing these agents in origin; the cryogenics
could be used to dump all agents into files and then restart them in the future.
From the technology point of view, we intend to match the Jason Embedded ver-
sion with the most recent Jason framework. This version uses version 1.4.1 since
some single-board computers only run Java 8, and the recent Jason framework
uses Java 17. Another point is to exploit alternative communication infrastruc-
tures such as SMTP/POP3 or XMPP to offer more reliability and privacy since
ContextNet uses UDP, and the message is transmitted without cryptography.

References

1. Akhtar, S.M., Nazir, M., Saleem, K., Mahfooz, H., Hussain, I.: An
Ontology-Driven IoT based Healthcare Formalism. International Jour-
nal of Advanced Computer Science and Applications 11(2) (2020).
https://doi.org/10.14569/IJACSA.2020.0110261

2. Baccour, E., Mhaisen, N., Abdellatif, A.A., Erbad, A., Mohamed, A., Hamdi, M.,
Guizani, M.: Pervasive ai for iot applications: A survey on resource-efficient dis-
tributed artificial intelligence. IEEE Communications Surveys Tutorials 24(4),
2366–2418 (2022). https://doi.org/10.1109/COMST.2022.3200740

3. Barnier, C., Aktouf, O.E.K., Mercier, A., Jamont, J.P.: Toward an embedded multi-
agent system methodology and positioning on testing. In: 2017 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW). pp. 239–
244 (2017). https://doi.org/10.1109/ISSREW.2017.57

4. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason (Wiley Series in Agent Technology). John Wiley Sons,
Inc., Hoboken, NJ, USA (2007), https://dl.acm.org/doi/10.5555/1197104

5. Brandao, F., Nunes, P., de Jesus, V.S., Pantoja, C.E., Viterbo, J.: Managing nat-
ural resources in a smart bathroom using a ubiquitous multi-agent system. In:
Proceedings of the 11th Workshop-School on Agents, Environments, and Applica-
tions (WESAAC 2017). pp. 101–112. FURG, São Paulo (2017)

6. Brandão, F.C., Lima, M.A.T., Pantoja, C.E., Zahn, J., Viterbo, J.: Engi-
neering Approaches for Programming Agent-Based IoT Objects Using the
Resource Management Architecture. Sensors 21(23), 8110 (Dec 2021).
https://doi.org/10.3390/s21238110

7. Bratman, M.: Intention, Plans, and Practical Reason. Cambridge: Cambridge, MA:
Harvard University Press (1987)

8. Burattini, S., Ricci, A., Mayer, S., Vachtsevanou, D., Lemee, J., Ciortea, A.,
Croatti, A.: Agent-oriented visual programming for the web of things (2022),
https://www.alexandria.unisg.ch/handle/20.500.14171/109205

9. Souza de Castro, L.F., Manoel, F.C.P.B., Souza de Jesus, V., Pantoja, C.E.,
Pinz Borges, A., Vaz Alves, G.: Integrating Embedded Multiagent Systems with
Urban Simulation Tools and IoT Applications. RITA 29(1), 81–90 (Jan 2022).
https://doi.org/10.22456/2175-2745.110837

14 Pantoja et al.

10. Chander, B., Pal, S., De, D., Buyya, R.: Artificial Intelligence-based Internet of
Things for Industry 5.0, pp. 3–45. Springer International Publishing, Cham (2022).
https://doi.org/10.1007/978-3-030-87059-1_1

11. Ciortea, A., Mayer, S., Michahelles, F.: Repurposing manufacturing lines on the fly
with multi-agent systems for the web of things. In: Proceedings of the 17th Inter-
national Conference on Autonomous Agents and MultiAgent Systems. p. 813–822.
AAMAS ’18, International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC (2018), https://dl.acm.org/doi/10.5555/3237383.3237504

12. D’Urso, F., Longo, C.F., Santoro, C.: Programming intelligent iot systems with a
python-based declarative tool. In: Proceedings of the 1st Workshop on Artificial
Intelligence and Internet of Things co-located with the 18th International Confer-
ence of the Italian Association for Artificial Intelligence (AI*IA 2019), Rende (CS),
Italy. CEUR Workshop Proceedings, vol. 2502, pp. 68–81. CEUR-WS.org (2019)

13. Endler, M., Baptista, G., Silva, L.D., Vasconcelos, R., Malcher, M., Pantoja, V.,
Pinheiro, V., Viterbo, J.: Contextnet: Context reasoning and sharing middleware
for large-scale pervasive collaboration and social networking. In: Proceedings of
the Workshop on Posters and Demos Track. PDT ’11, Association for Computing
Machinery, New York, NY, USA (2011). https://doi.org/10.1145/2088960.2088962

14. Finin, T., Fritzson, R., McKay, D., McEntire, R.: Kqml as an agent communication
language. In: Proceedings of the Third International Conference on Information
and Knowledge Management. p. 456–463. CIKM ’94, Association for Computing
Machinery, New York, NY, USA (1994). https://doi.org/10.1145/191246.191322

15. Kampik, T., Nieves, J.C.: JS-son - A Lean, Extensible JavaScript Agent Program-
ming Library. In: Dennis, L.A., Bordini, R.H., Lespérance, Y. (eds.) Engineering
Multi-Agent Systems, vol. 12058, pp. 215–234. Springer International Publishing,
Cham (2020). https://doi.org/10.1007/978-3-030-51417-4_11

16. Karaduman, B., Tezel, B.T., Challenger, M.: Enhancing bdi agents using fuzzy
logic for cps and iot interoperability using the jaca platform. Symmetry 14(7)
(2022). https://doi.org/10.3390/sym14071447

17. Lazarin., N., Pantoja., C., Viterbo., J.: Swapping physical resources at runtime
in embedded multiagent systems. In: Proceedings of the 15th International Con-
ference on Agents and Artificial Intelligence - Volume 1: ICAART,. pp. 93–104.
INSTICC, SciTePress (2023). https://doi.org/10.5220/0011750700003393

18. Lazarin, N., Pantoja, C., Viterbo, J.: Towards a toolkit for teaching ai supported
by robotic-agents: Proposal and first impressions. In: Anais do XXXI Workshop
sobre Educação em Computação. pp. 20–29. SBC, Porto Alegre, RS, Brasil (2023).
https://doi.org/10.5753/wei.2023.229753

19. Lazarin, N.M., Pantoja, C.E.: A robotic-agent platform for embedding soft-
ware agents using raspberry pi and arduino boards. In: Proceedings of the 11th
Workshop-School on Agents, Environments, and Applications WESAAC 2015. pp.
13–20. Niteroi (2015)

20. Manoel, F., Pantoja, C.E., Samyn, L., de Jesus, V.S.: Physical Artifacts for Agents
in a Cyber-Physical System: A Case Study in Oil & Gas Scenario (EEAS). In: The
32nd International Conference on Software Engineering and Knowledge Engineer-
ing, SEKE 2020. pp. 55–60. KSI Research Inc. (2020)

21. Michel, F., Ferber, J., Drogoul, A.: Multi-Agent Systems and Simulation: a Survey
From the Agents Community’s Perspective. In: Danny Weyns, A.U. (ed.) Multi-
Agent Systems: Simulation and Applications, p. 47. Computational Analysis, Syn-
thesis, and Design of Dynamic Systems, CRC Press - Taylor & Francis (May 2009)

A Spin-off Version of Jason for IoT and Embedded Multiagent Systems 15

22. Palanca, J., Terrasa, A., Julian, V., Carrascosa, C.: Spade 3: Supporting the
new generation of multi-agent systems. IEEE Access 8, 182537–182549 (2020).
https://doi.org/10.1109/ACCESS.2020.3027357

23. Pantoja, C., Soares, H.D., Viterbo, J., Seghrouchni, A.E.F.: An Architecture
for the Development of Ambient Intelligence Systems Managed by Embedded
Agents. In: The 30th International Conference on Software Engineering & Knowl-
edge Engineering. pp. 215–249. KSI Research Inc, San Francisco Bay (Jul 2018).
https://doi.org/10.18293/SEKE2018-110

24. Pantoja, C.E., Stabile, M.F., Lazarin, N.M., Sichman, J.S.: Argo: An extended
jason architecture that facilitates embedded robotic agents programming. In: En-
gineering Multi-Agent Systems. pp. 136–155. Springer International Publishing,
Cham (2016). https://doi.org/10.1007/978-3-319-50983-9_8

25. Rafferty, L.: Agent-based modeling framework for adaptive cyber defence of the
Internet of Things. PhD Thesis, Faculty of Business and IT, University of Ontario
Institute of Technology, Oshawa, Ontario, Canada (2022)

26. da Rocha Costa, A.C., Hübner, J.F., Bordini, R.H.: On entering an open society.
In: XI Brazilian Symposium on Artificial Intelligence. vol. 535, p. 546 (1994)

27. Souza de Jesus., V., Pantoja., C.E., Manoel., F., Alves., G.V., Viterbo., J.,
Bezerra., E.: Bio-inspired protocols for embodied multi-agent systems. In: Pro-
ceedings of the 13th International Conference on Agents and Artificial In-
telligence - Volume 1: ICAART. pp. 312–320. INSTICC, SciTePress (2021).
https://doi.org/10.5220/0010257803120320

28. Wooldridge, M.: An Introduction to MultiAgent Systems. Wiley (2009)

View publication stats

https://www.researchgate.net/publication/374620450

