
An IDE to Support the Development of
Embedded Multi-Agent Systems

Vinicius Souza de Jesus1[0000−0002−4534−6078],
Nilson Mori Lazarin1,2[0000−0002−4240−3997],

Carlos Eduardo Pantoja1,2[0000−0002−7099−4974],
Gleifer Vaz Alves3[0000−0002−5937−8193],

Gabriel Ramos Alves de Lima2[0009−0009−3233−9408], and
Jose Viterbo1[0000−0002−0339−6624]

1 Fluminense Federal University, Brazil
2 Federal Center for Technological Education Celso Suckow da Fonseca, Brazil

3 Federal University of Technology - Paraná, Brazil
{vsjesus, viterbo}@id.uff.br, {nilson.lazarin, pantoja}@cefet-rj.br,

gabriel.ramos@aluno.cefet-rj.br, gleifer@utfpr.edu.br

Abstract. Embedded MAS development requires knowledge in differ-
ent areas, such as agent-oriented programming, object-oriented program-
ming, low-level programming, and basic electronics concepts. The liter-
ature has a consolidated Embedded MAS development architecture di-
vided into four layers: Reasoning, Serial, Firmware, and Hardware. How-
ever, one of the main difficulties that MAS designers face is the need to
use and configure different Integrated Development Environments (IDE)
and make several integrations to embed the MAS. Even using all these
technologies, embedding and monitoring the Embedded MAS is done us-
ing physical wired connections, making them limited and impracticable
depending on the application. Therefore, this work aims to present an
IDE to develop Embedded MAS that centralizes the entire development
in a single IDE with all required integrations and configurations done.
Moreover, the embedding and monitoring MAS of the IDE are done re-
motely without physical wired connections. Finally, aiming to show the
IDE’s applicability and functionalities, this work presents a case study
set on a road junction with different Embedded MAS.

Keywords: Embedded MAS · Development · IDE.

1 Introduction

The Multi-Agent System (MAS) [19] comprises autonomous, proactive agents
with decision-making capacity, social abilities to interact with other agents and
cooperate to achieve a common goal. A MAS can be applied in virtual or physical
environments. The virtual environment is a controlled environment that allows
the application of MAS for specific tests. However, the physical environment
is unpredictable and can change at any time, forcing the agents to update the



2 Jesus et al.

information captured from the environment frequently to avoid acting based
on outdated information. For applying a MAS in a physical environment, the
agents use several sensors and actuators grouped in a physical device to capture
information and act/modify this environment. When a MAS is applied to a
physical device can be classified as an Embedded MAS [5].

Several architectures for developing an agent, such as SOAR [11] and Belief-
Desire-Intentions (BDI) [6], represent the cognitive reasoning processes that en-
able decision-making. The SOAR focuses more on the information storage pro-
cess, and the BDI on decision-making. This work uses the BDI regarding its
agents’ decision-making process. In this process, Beliefs are the information that
an agent accepts as truth, including information acquired through interactions
with other agents or perceptions of the environment. Desires represent an agent’s
motivation to achieve a specific goal. Finally, Intentions represent the agent’s
commitment to performing some actions to achieve those goals. [6].

As the BDI allows agents to make decisions based on their beliefs, which can
be perceptions of the environment, this architecture is interesting to be applied in
an unpredictable environment such as the physical one. For embedding a MAS in
a physical environment, there is a consolidated architecture that is divided into
four layers [13]: the Reasoning layer is responsible for cognition, and it usually
is composed of MAS with BDI agents. the Serial layer for the interface between
the MAS and the microcontrollers [12, 8]; the Firmware layer for the programs of
microcontrollers; Finally, the Hardware layer is composed of sensors and actua-
tors. Therefore, to develop an Embedded MAS, the MAS designer needs to deal
with different areas of knowledge, such as agent-oriented programming to de-
velop the MAS (Reasoning Layer), object-oriented programming to develop the
middleware that allows the exchange of information between the MAS and the
microcontroller (Serial layer), low-level programming to develop the firmware of
the microcontroller (Firmware Layer), and electronics for operating the sensors
and actuators (Hardware layer). Moreover, the MAS designer must use one In-
tegrated Development Environment (IDE) per programming language involved
in this development procedure and provide integration between all of them.

Some frameworks in the literature aim to assist in developing MAS supported
by IDEs, such as the Jason framework [4] that has an AgentSpeak [14] language
interpreter for programming BDI agents and can be incorporated into the Eclipse
IDE. In addition, the Visual IDE’s [7] work allows the programming of MAS in
code blocks to facilitate the codification for MAS designers who do not dominate
the agent-oriented language to develop MAS. Finally, the ARGO agents [13] is
a customized agent architecture capable of controlling microcontrollers.

However, these works do not cover the entire Embedded MAS development
architecture presented, providing support only for the Reasoning layer. Conse-
quently, to obtain support for the other layers, it is necessary to use different
IDEs, sometimes one IDE per layer. In addition, the embedding and monitoring
process requires physical wired connections, making the embedded process lim-
ited for instance in devices like Unmanned Aerial Vehicles (UAV) and Remotely
Operated Vehicles (ROVs). Besides, the monitoring process with these devices



An IDE to Support the Development of Embedded Multi-Agent Systems 3

in operation is impracticable. For example, the UAV is an aerial and unmanned
vehicle, so its operation is controlled and monitored remotely since maintain-
ing a physical wired connection limits the mobility and the maximum area of
exploration to the length of the wire.

Therefore, the objective of this work is to present an IDE to support the
development of Embedded MAS considering all architecture’s layers that need
programming (Reasoning, Serial, and Firmware) with all necessary integration
and configuration between these elements. So, the MAS designer can develop
and program in three different layers of the architecture using a single IDE. In
addition, the IDE allows to embed MAS and monitor their agents’ minds (all
Beliefs, Desires, and Intentions of each agent) remotely and wireless.

For this, the Jason framework was used to develop MAS (Reasoning Layer),
as it is consolidated in the literature. For the Serial layer, the Javino [12] is the
serial interface used, allowing messages to be exchanged with guaranteed con-
tent integrity. And in the Firmware layer, the Arduino Command Line Interface
(CLI) was used to compile, upload and deploy the microcontroller program, al-
lowing it to capture and send commands to the sensors and actuators. Finally,
the integration and configuration of all these technologies were made and incor-
porated into a single IDE named Cognitive Hardware on Network - Integrated
Development Environment (ChonIDE).

To show the applicability of ChonIDE ’s functionalities, a case study was
elaborated and set on a road junction traffic scenario. The scenario is composed
of an autonomous vehicle and a traffic light where the autonomous vehicle must
be able to perceive the colors of the traffic light signal and, using its cognitive
process, decide to move or stop the vehicle based on the colors of the traffic light.
And the traffic light must change the colors according to the current traffic laws.

The main contributions of this paper are: i. allows the development and
monitoring of the Embedded MAS using a single IDE, with all the required in-
tegrations of the different technologies made; ii. enables the development and
monitoring of the Embedded MAS remotely without using a physical wired con-
nection, which allows applying MAS in devices such as ROVs and UAVs that
were previously done in a limited way; iii. assists in facilitating the Embedded
MAS development by allowing MAS designers to embed and monitoring MAS
even if they do not know how to deal with all layers of the architecture since it
already has the technologies integrated and configured into the ChonIDE.

This work is organized as follows: Section 2, presents the related work; in
Section 3, ChonIDE is presented, its functionalities and interaction with the
designer; Section 4 discusses the case study where Embedded MAS is developed
on a road junction scenario; finally, in Section 5, the final considerations and
future works are presented.

2 Related Works

Considering the Embedded MAS development with agents capable of proac-
tively and autonomously making decisions, some works in the agents’ literature



4 Jesus et al.

implement the BDI architecture and have mechanisms to enable embedding
MAS. Two frameworks stand out with several solutions to embed MAS and
are part of many works in the literature, such as ARGO agents [13], Physical
Artifacts [5], Bioinspired protocols [10], integration with the Robotic Operating
System (ROS) [17]. The first framework is Jason (previously presented), and
the second is JaCaMo [3] which combines three other frameworks: Jason is re-
sponsible for supporting the agents’ development, CArtAgO (Common ARTifact
Infrastructure for AGents Open Environments) [15] for the agents’ interaction
with the environment, and Moise+ [9] for coordinating the organizational part
of the agents in the MAS.

The Jason framework has a specific text editor for programming languages
incorporated in its distribution called jEdit4 that allows the programming of
cognitive agents (Jason + jEdit). In addition, the Jason framework has a plug-
in for the Eclipse IDE 5 that provides tools for MAS development as a particular
perspective that enables the creation, deletion, and import of MAS development
projects and agents through the MAS interface in Eclipse IDE (Jason + Eclipse).

However, these solutions only consider the Reasoning layer. As both use the
Jason framework, it is possible to integrate the customized architecture of agents,
named ARGO agents, into the presented solutions (Jason + JEdit/Eclipse +
ARGO). These ARGO agents can communicate and control microcontrollers, al-
lowing them to capture information and act in the physical environment. For this,
these agents have a serial interface called Javino in their constitution. Javino [12]
has a process for verifying the integrity of messages and guaranteeing lossless
delivery of information between the ARGO agents and microcontrollers.

As Javino is a generic serial interface that can communicate with different
microcontrollers, the ARGO Agents (which has Javino in its architecture) can
control different microcontrollers. Although several microcontrollers are available
on the market, in this work, the Arduino microcontroller was used due to its ap-
plicability, versatility, and low monetary cost. For the Arduino microcontroller,
several text editors and IDE support developing, compiling, uploading, and de-
ploying its firmware. However, the Arduino IDE is a well-used tool because the
producers built it themselves, it is free, and it has a web6 and a desktop7 version
to install on the MAS device (Arduino IDE). Moreover, the Arduino IDE allows
the import of external libraries, which facilitates the integration with the Javino
serial interface (Arduino IDE + Javino).

Considering the JaCaMo framework integrates with several IDE, which stands
out: the integration with the Eclipse IDE 8 that provides a whole perspective
that allows MAS programming using all three frameworks (Jason, CArtAgO,
and Moise+) jointly and simultaneous (JaCaMo + Eclipse). In addition, there
is an approach for agent-oriented visual programming that aims to enable MAS

4 https://jason.sourceforge.net/doc/tutorials/getting-started/readme.html
5 https://jason.sourceforge.net/mini-tutorial/eclipse-plugin/
6 https://docs.arduino.cc/learn/starting-guide/the-arduino-web-editor
7 https://www.arduino.cc/en/software
8 https://jacamo.sourceforge.net/eclipseplugin/tutorial/



An IDE to Support the Development of Embedded Multi-Agent Systems 5

designers without programming experience but with specific knowledge of BDI
agents can develop a MAS. Considering this approach, an IDE integrated with
the JaCaMo framework named Visual IDE [7] was implemented, which has a
visual programming system for agents that simplify the agent-oriented program-
ming concepts using a blocks-based visual development environment (JaCaMo +
Visual IDE). Another IDE highlighted in the agents’ area is a WEB IDE which
uses the JaCaMo framework to allow interactive programming of MAS named
JaCaMo WEB [2]. The interactive programming allows the MAS designer to
modify the agents’ source code at runtime without stopping and compiling the
MAS. So, the MAS keeps running while the MAS designer changes the source
code, maintaining MAS availability (JaCaMo WEB).

Finally, JaCaMo framework has a plugin for Visual Studio Code (VS Code)9.
Considering that the JaCaMo framework has Jason in its constitution, it is
possible to integrate ARGO agents with JaCaMo. Since VS Code has a plugin for
programming, uploading, and deploying firmware for Arduino microcontrollers,
it is theoretically possible to centralize the development of an Embedded MAS in
VS Code by performing all of the described integrations (VS Code + ARGO +
Arduino). However, to program the microcontroller firmware, it is necessary to
have a physical wired connection between the MAS designer’s computer (where
the firmware is being developed) and the microcontroller, limiting the embedding
and making it impracticable to monitor in some devices.

Aiming at the Embedded MAS development ChonIDE is a IDE for sup-
porting the development of Embedded MAS with functionalities that include
some layers (Reasoning, Serial, and Firmware) of the Embedded MAS develop-
ment architecture, such as coding, compilation, uploading, and deployment of
microcontroller firmware and agent source code. Furthermore, ChonIDE has a
monitoring module that allows the designer to monitor the MAS log and the
minds of all agents using MindInspector from Jason framework. All these func-
tionalities can be done in remote solutions that do not require a physical wired
connection., allowing embedding in devices such as UAVs and ROVs that re-
quire unrestricted mobility for locomotion. In Table 1, there are comparisons of
the functionalities to develop Embedded MAS provided by ChonIDE and other
IDE. These comparisons show which layers of the Embedded MAS architecture
each IDE supports the development and whether the embedding and monitoring
procedure is done remotely or not.

3 ChonIDE: The IDE For Embedded MAS

As seen previously, one of the main difficulties in the Embedded MAS develop-
ment is dealing with concepts from different areas of knowledge (e.g., agent-
oriented programming, object-oriented programming, and low-level program-
ming with structured languages). In addition, the Embedded MAS designer
needs to use one different IDE per programming language, making integrations
and configurations between all of them.

9 https://code.visualstudio.com/



6 Jesus et al.

Table 1: Comparison between ChonIDE and other IDEs.
Reasoning Serial Firmware Wireless

Layer Layer Layer Embedding Monitoring

Jason + JEdit
√

X X X X

Jason + Eclipse
√

X X X X

Jason + JEdit + ARGO
√ √

X X X

Jason + Eclipse + ARGO
√ √

X X X

Arduino IDE X X
√

X X

Arduino IDE + Javino X
√ √

X X

JaCaMo + Eclipse
√

X X X X

JaCaMo + Visual IDE
√

X X X X

JaCaMo WEB
√

X X X X

VS Code + ARGO + Arduino
√ √ √

X X

ChonIDE
√ √ √ √ √

Thereat, aiming to facilitate and assist in the Embedded MAS development,
this work presents a IDE named Cognitive Hardware on Network - Integrated
Development Environment (ChonIDE). ChonIDE is a development environment
that integrates technologies and tools to support the development of Embedded
MAS, considering the three layers that require programming (e.g., Reasoning,
Serial, and Firmware) in a single WEB platform. The ChonIDE works by estab-
lishing a network connection (wireless or wired) between the designer’s computer
and the physical device, so all functionalities can be performed remotely. More-
over, ChonIDE’s main functionalities, such as embedding, starting, stopping,
and monitoring the agents’ minds, are activated by simply pressing buttons on
the graphical interface. As the ChonIDE is a WEB platform, the MAS designer
can develop an Embedded MAS using any device, such as a laptop, computer,
or smartphone, without requiring configuration and integrations.

For the development of an Embedded MAS using ChonIDE, the MAS de-
signer needs a physical device composed of sensors and actuators to interact with
the environment, one or more microcontrollers to manage the operation of the
sensors and actuators, and, finally, a single board computer (e.g., Raspberry)
with a network adapter (can be wired or wireless) for connecting the physical
device on the LAN to able ChonIDE to embed and monitor the MAS. With the
physical device prototypes connected on the same LAN of ChonIDE, the MAS
designer can embed and monitor the MAS operation of any prototype and send
Instructions addressed to each one separately using the prototype identification
on the LAN. The Instructions are to import a new MAS, start and stop them.
Considering the microcontroller’s firmware of the prototypes, the Instructions
are to compile, upload, and deploy new firmware. The return of the execution
of each of the Instructions is presented in a Log interface in ChonIDE.

Therefore, the information flow of the architecture of ChonIDE works as
follows: the graphical interface of ChonIDE (WEB platform) is responsible for
interactions with the MAS designer. These interactions are converted into the



An IDE to Support the Development of Embedded Multi-Agent Systems 7

Instructions (previously presented) to be executed on the physical device. The
Instructions are sent via network communication (wireless or wired) to the phys-
ical device, and ChonOS (installed on the physical device) is responsible for in-
terpreting and executing them. Figure 1 shows the interaction of ChonIDE with
the physical prototype.

Fig. 1: Illustration of ChonIDE interactions.

To support the layers (Reasoning, Serial, and Firmware) that require pro-
gramming, ChonIDE has a generic coder that allows programming in C (Firmware
layer) and AgentSpeak (Reasoning layer). For the Serial layer, the integrations
and configurations for the microcontroller of the physical device to communicate
with the MAS agents are already done by the Javino serial communication in-
terface. So, to control the microcontroller, the MAS designer only needs to use
the ARGO agents with their internal actions (e.g., port, act, and percepts).

To facilitate the embedding of MAS using ChonIDE, this work uses a special-
ized GNU/Linux distribution, which has a set of services dedicated to embedding
MAS. This distribution, named Cognitive Hardware on Network - Operational
System (ChonOS)10, has services such as network management, serial interface
(using Javino), and a specific Jason’s version for Embedded MAS. This Jason’s
version used by ChonIDE, in addition to the ARGO agent, has another cus-
tomized agent architecture named Communicator Agents. The Communicator
agents can interact with agents of other MAS using a network infrastructure.
These agents allow the MAS designer using ChonIDE to create MAS capable of
communicating and moving agents between different MAS. Moreover, the net-
work manager service can check that no known networks are available; in this
case, it changes the Wireless adapter configuration from client to access point
mode to allow the MAS designer to connect with the physical prototype.

Like other IDEs, ChonIDE allows programming the source code of BDI
agents, adding new agents, modifying their names, choosing their architecture

10 http://chonos.sf.net



8 Jesus et al.

(e.g., Communicator, ARGO, or Standard Jason Architecture), and removing
any MAS agents. Before starting the MAS execution, ChonIDE verifies if the de-
veloped source code is already in the physical device. If it is not found, ChonIDE
uploads the MAS source code to the physical device and starts the MAS exe-
cution automatically. However, if the MAS source code is already found on the
physical device, ChonIDE just starts the MAS execution. Moreover, the stop
functionality stops the MAS execution, keeping the MAS source code on the
physical device for another future execution. With all these functionalities, the
MAS designer can develop a MAS remotely and embed it in a physical device
without any wire connection.

To allow the MAS designer to monitor the execution of the MAS, ChonIDE
has two functionalities: The first allows seeing the agents’ minds at runtime
with their beliefs, desires, and intentions provided by the MindInspector [4] of
the Jason framework used by ChonIDE. The second is a MAS log interface that
centralizes the logs and error messages generated by the MAS, allowing the MAS
designer to identify and correct some errors or possible unwanted behavior of
some agents. In addition, the MAS log also presents the information written
on the console by the agents using internal actions such as .print. Like the em-
bedding functionalities, these monitoring functionalities are enabled remotely
without wired connections. Therefore, ChonIDE allows the application of Em-
bedded MAS in physical devices such as the UAV that its operation is controlled
and monitored remotely, which with previous technologies was done in a limited
way since they use wire connections.

Finally, to support the development in the Firmware layer, the generic coder
of the ChonIDE also allows the programming of the microcontroller’s firmware.
To assist in developing the firmware, ChonIDE has three functionalities: The
first allows compiling the source code and seeing the return message from the
compilation process for the MAS designer to see and correct any error that occurs
with the developed source code. The second allows importing external libraries,
which is essential when using some sensors or actuators that require a particular
library to control them. The third allows uploading and deploying the firmware
on the microcontroller and can also be done remotely without a physical wired
connection. In Figure 2, ChonIDE’s graphical interface is highlighted.

4 Case Study

To show the heterogeneity and applicability of ChonIDE, the case study is com-
posed of MAS applied to physical devices that require mobility and remote mon-
itoring (e.g., autonomous vehicle) and to a stationary device (e.g., traffic light).
The proposed test scenario considers a road junction with an autonomous ve-
hicle and semaphore prototypes. The scenario selection is mainly motivated by
the following: i. Road junctions represent high risks of traffic accidents, as men-
tioned in [18]. ii. Previous work developed towards formalising and implementing
autonomous vehicles endowed with road traffic rules, specifically road junction
rules, as seen in [1] and [16].



An IDE to Support the Development of Embedded Multi-Agent Systems 9

Fig. 2: ChonIDE’s graphical interface.

This case study presents the feasibility of deploying what has been proposed
in previous works (e.g., [1] and [16]) The agents (autonomous vehicles) with the
corresponding knowledge of road traffic rules are embedded in a MAS. The traffic
light must execute its change logic of the traffic signal color agreed, beginning
with red, then changing to green, and finishing with yellow to restart, forming
a cycle. Moreover, the traffic light has a mechanism to inform the autonomous
vehicle of the current signal color. So, the autonomous vehicle should be able to
receive the current traffic light and have knowledge about the traffic rules; it is
agreed that in the red and yellow signal colors of the traffic lights, the vehicle
must stop, and only at the green signal color should it go on. Based on this, the
autonomous vehicle uses its decision ability process to respect the traffic rules
and decide whether it should proceed through the junction or stop.

4.1 Deployment

The road junction scenario consists of two Embedded MAS applied in two phys-
ical prototypes (one for each). For implementing these Embedded MAS, it was
used the Embedded MAS architecture presented, and the development started
from the Hardware layer, passing through the Firmware layer, and going up un-
til reaching the Reasoning layer. Therefore, the semaphore prototype was built
using a single-board computer with a Wi-Fi network card (e.g., Raspberry PI)
responsible for storing the MAS, a microcontroller (e.g., Arduino UNO) for in-
teraction with the hardware components, and three LEDs on the green, red and
yellow colors to represent traffic signals. Figure 3a has a schematic that shows
how the traffic light prototype circuit was built.

The other physical prototype built was the autonomous vehicle prototype
that is composed of a single-board computer with a Wi-Fi adapter (e.i. Banana
PI), a light sensor called Light Dependent Resistor LDR; an HC-SR04 Ultrasonic
Sensor for identifying obstacles; a set of five LEDs to light the vehicle; a buzzer;
a set of Direct Current (DC) motors with an H bridge L298N for locomotion;
a Arduino UNO microcontroller for controlling the hardware components. In
Figure 3b, it is possible to see the autonomous vehicle prototype built.



10 Jesus et al.

(a) Schematic of semaphore prototype. (b) Autonomous vehicle prototype.

Fig. 3: Prototypes.

With the prototype built, ChonIDE was first used to develop the firmware
of the prototype’s microcontroller. After that, the MAS designer only needs to
focus on developing the MAS. Considering this, the ChonIDE is used to de-
velop and embed the MAS in the autonomous vehicle prototype. The MAS is
composed of two agents: an ARGO agent controls the physical hardware of the
vehicle, receiving perceptions of the environment through sensor measurements
and acting with the activation and deactivation of the actuator such as mo-
tors, Light-Emitting Diode (LED), and buzzers. Finally, a Communicator agent
requests and receives information about the current traffic signal color to the
traffic light Embedded MAS.

Like the implementation of the autonomous vehicle Embedded MAS, the
traffic light Embedded MAS also uses the ChonIDE to develop the microcon-
troller’s firmware and the Embedded MAS. So the traffic light Embedded MAS
is also implemented using two agents: an ARGO agent responsible for respect-
ing the traffic laws by activating the traffic signals in the correct colors, knowing
the current color of the signal, and informing the Communicator agent. The
Communicator agent is responsible for receiving requests from the autonomous
vehicle Embedded MAS and responding to the current signal color of the traffic
light based on its ARGO agent’s knowledge.

4.2 Reproducibility

The documentation and instructions for the reproduction of the presented traf-
fic intersection test scenario can be found in the experiment repository of this
work11. The procedure for reproducing the test scenario can be summarized into
four main activities: construction of prototypes, installing ChonOS, firmware
programming of the microcontrollers inserted in the prototypes, and finally, em-
bedding and monitoring the MAS in the prototypes.

For the prototypes’ construction, there is a step-by-step with the neces-
sary electronic components and the diagrams for orientation in the prototypes’
building in the experiment repository11. With the prototype built, the MAS

11 https://chonide.chon.group/



An IDE to Support the Development of Embedded Multi-Agent Systems 11

designer must install the GNU/Linux ChonOS distribution on the prototypes’
single-board computers following the installation manual available on the official
ChonOS website10. With ChonOS installed on the prototypes, it is possible to
access ChonIDE with all its functionalities. Given this, the MAS designer can
use the ChonIDE resources to deploy the firmware of the prototypes’ micro-
controllers where the source codes are available in the experiment repository11.
Finally, for the entire experiment’s reproduction, the MAS designer must access
the experiment repository to retrieve the source code of all MAS agents of the
test scenario and use ChonIDE to embed and monitor the developed MAS11.

5 Final Remarks

In this work, an Embedded MAS development architecture divided into four
layers was used: The Reasoning layer; the Serial interface layer between the
MAS and the physical device; the Firmware layer to program the microcontroller
behavior, the Hardware layer composed of sensors and actuators. With this, it
is possible to observe that one of the difficulties in embedding MAS is that
it requires knowledge in different areas (Electronics, Low-Level Programming,
Object-Oriented, and Agent-Oriented Programming).

Given this difficulty and others, such as the need to use different IDEs (usu-
ally one for each layer), this work presents a WEB IDE to help the development
of an Embedded MAS named ChonIDE. ChonIDE has graphical interfaces and
functionalities to support the three layers that require programming (Reason-
ing, Serial, and Firmware) of the architecture used, allowing the MAS designer
to develop the Embedded MAS using only a single IDE, the ChonIDE. In ad-
dition, ChonIDE’s embedding and monitoring procedure does not need to use
physical wired connections with the physical device, which allows applying MAS
to physical devices with remotely controlled and monitored operations, such as
ROVs and UAVs, which with the previous technologies this sort of connection
was somehow restricted.

As future work, it is intended to add to the coding interface a real-time
syntax checker, the auto-completion function, keywords identification to pro-
duce a visual differentiation in writing these words, and functionalities to debug
the Embedded MAS. Moreover, it is expected to provide integration with the
JaCaMo framework to allow the programming of agents’ interaction with the
environment’s Artifacts and the organizational part of the agents in the MAS.
With the integration with JaCaMo done, it is expected that the integration with
ROS will be facilitated and can be incorporated into ChonIDE. Finally, create
an interface for Embedded MAS designers to send suggestions and comments to
produce qualitative and quantitative feedback from ChonIDE to evaluate how
much ChonIDE simplifies the development of Embedded MAS.

References

1. Alves, G.V., Dennis, L., Fisher, M.: Formalisation and implementation of road
junction rules on an autonomous vehicle modelled as an agent. In: Formal Methods.



12 Jesus et al.

FM 2019 International Workshops. pp. 217–232. Springer (2020)
2. Amaral, C.J., Hübner, J.F.: Jacamo-web is on the fly: An interactive multi-agent

system ide. In: Dennis, L.A., Bordini, R.H., Lespérance, Y. (eds.) Engineering
Multi-Agent Systems. pp. 246–255. Springer International Publishing (2020)

3. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent ori-
ented programming with jacamo. Science of Computer Programming 78(6), 747–
761 (2013)

4. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley & Sons Ltd (2007)

5. Brandão, F.C., Lima, M.A.T., Pantoja, C.E., Zahn, J., Filho, J.V.: Engineering ap-
proaches for programming agent-based iot objects using the resource management
architecture. Sensors (Basel, Switzerland) 21 (2021)

6. Bratman, M.E.: Intention, Plans and Practical Reasoning. Cambridge Press (1987)
7. Burattini, S., Ricci, A., Mayer, S., Vachtsevanou, D., Lemee, J., Ciortea, A.,

Croatti, A.: Agent-oriented visual programming for the web of things (2022)
8. Guinelli, J.V., Pantoja, C.: A Middleware for Using PIC Microcontrollers and

Jason Framework for Programming Multi-Agent Systems. In: Anais do Workshop
de Pesquisa em Computação dos Campos Gerais WPCCG. vol. 1. Ponta Grossa
(2016), http://www.wpccg.pro.br/volume001.html

9. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organisa-
tions with organisational artifacts and agents. Autonomous agents and multi-agent
systems 20(3), 369–400 (2010)

10. Jesus, V.S., Pantoja, C.E., Manoel, F.C.P.B., Alves, G.V., Viterbo, J., Bezerra,
E.: Bio-inspired protocols for embodied multi-agentsystems. In: 13th International
Conference on Agents and Artificial Intelligence (ICAART 2021) (02 2021)

11. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intel-
ligence. Artificial intelligence 33(1), 1–64 (1987)

12. Lazarin, N.M., Pantoja, C.E.: A Robotic-agent Platform for Embedding Soft-
ware Agents Using Raspberry Pi and Arduino Boards. In: Proceedings of the 9th
Software Agents, Environments and Applications School (WESAAC). pp. 13–20.
Niterói (2015)

13. Pantoja, C., Junior, M., Lazarin, N.M., Sichman, J.: ARGO: A Customized Jason
Architecture for Programming Embedded Robotic Agents. In: Fourth International
Workshop on Engineering Multi Agent Systems (EMAS 2016). Singapore (2016)

14. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: de Velde, W.V., Perram, J.W. (eds.) Proceedings of the 7th European workshop
on Modelling autonomous agents in a multi-agent world (MAAMAW’96). Lecture
Notes in Artificial Intelligence, vol. 1038, pp. 42–55. Springer-Verlag, USA (1996)

15. Ricci, A., Viroli, M., Omicini, A.: Cartago: A framework for prototyping artifact-
based environments in mas. In: International Workshop on Environments for Multi-
Agent Systems. pp. 67–86. Springer (2006)

16. Schwammberger, M., Alves, G.V.: Extending Urban Multi-Lane Spatial Logic to
Formalise Road Junction Rules. Electronic Proceedings in Theoretical Computer
Science 348, 1–19 (Oct 2021). https://doi.org/10.4204/EPTCS.348.1

17. Silva, G.R., Becker, L.B., Hübner, J.F.: Embedded architecture composed of cogni-
tive agents and ros for programming intelligent robots. IFAC-PapersOnLine 53(2),
10000–10005 (2020). https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.2718

18. Wada, Y., Asami, Y., Hino, K., Nishi, H., Shiode, S., Shiode, N.: Road Junction
Configurations and the Severity of Traffic Accidents in Japan. Sustainability 15(3),
2722 (Jan 2023). https://doi.org/10.3390/su15032722

19. Wooldridge, M.J.: Reasoning about rational agents. MIT press (2000)


